الكهرومغناطيسية ـ موضوع علمي فيزيائي
الفيزياء "
***966;***965;***963;***953;***954;***942;"(الفيزياء من الكلمة الأغريقية فيزيك"، وتعني معرفة الطّبيعة) هي العِلم الذي يدرس المادةوحركتها. بالإضافة إلى مفاهيم أخرى كالفضاءوالزمن، ويتعامل مع خصائص كونية محسوسة يمكن قياسها مثل القوةوالطاقةوالكتلةوالشحنة. وتعتمد الفيزياء المنهج التجريبي، أي أنها تحاول تفسير الظواهر الطّبيعية والقوانين التي تحكم الكون عن طريق نظريات قابلة للاختبار.
تعتبر الفيزياء من أحد أقدم التّخصصات الأكاديمية، فهي قد بدأت بالبزوغ منذ العصور الوسطى وتميزت كعلم حديث في القرن السابع عشر، وباعتبار أن أحد فروعها، وهو علم الفلك، يعد من أعرق العلوم الكونية على الإطلاق.
وللفيزياء مكانة متميزة في الفكر الإنساني، فهي تأثّرت كما كان لها الأثر الحاسم في بعض الحقول المعرفية والعلمية الأخرى مثل الفلسفةوالرياضياتوعلم الأحياء. ولقد تجسدت أغلب التّطورات التي أحدثتها بشكل عملي في عدّة قطاعات من التقنيةوالطب. فعلى سبيل المثال، أدى التّقدم في فهم الكهرومغناطيسية إلى الانتشار الواسع في استخدام الأجهزة الكهربائية مثل التلفازوالحاسوب؛ و كذلك تطبيقات الديناميكا الحرارية إلى التطور المذهل في مجال المحركات ووسائل النقل الحديثة؛ والميكانيكا الكمية إلى اختراع معدات مثل المجهر الإلكتروني؛ كما كان لعصر الذرة، بجانب آثاره المدمرة، استعمالات هامة في علاج السرطان وتشخيص الأمراض وتوليد الطاقة.
معظم الفيزيائيين اليوم يكونون متخصصين في مجالين متكاملين وهما الفيزياء النظرية أو الفيزياء التجريبية، وتهتم الأولى بصياغة النظريات بإعتماد نماذج رياضية، فيما تهتم الثانية بإجراء الاختبارات على تلك النظريات، بالإضافة إلى اكتشاف ظواهر طبيعية جديدة. وبالرغم من الكم الهائل من الاكتشافات المهمّة التي حققتها الفيزياء في القرون الأربعة الماضية، إلا أن العديد من المسائل لا تزال بدون حلول إلى حد الآن ، كما أن هناك مجالات نظرية وتطبيقية تشهد نشاطاً وأبحاثاً مكثّفة.
ملاحظة: اعتبار أن " الفيزياء فرع من الرياضيات" عبارة خاطئة تماماً, لأن النماذج الرياضية تستعمل في علم الفيزياء فقط لتسهيل فهم الظواهر الفيزيائية. وأن مضامين النماذج الرياضية في أي علم من العلوم الطبيعية لا يتدخل في شأنها علم الرياضيات.
الكهرومغناطيسية
الكهرومغناطيسية : هى فيزياء المجال المغناطيسي (ويسمى أيضا حقل مغناطيسي) ،حيث يؤثر ذلك المجال على الشحنة الكهربية أو الجسيم المشحون كهربيا (والمقصود بالجسيم يختلف من آن لآخر ففى الكهرومغناطيسية الكلاسيكية يكون المقصود بالجسيم هو الجسيم النقطى اما في الكهرومغناطيسية الكمية يكون المقصد هو الجسيم الأولى), وفى المقابل يتأثر الحقل بوجود تلك الجسيمات وحركتها في المجال .
الحقل المغناطيسي المتغير يخلق مجالا كهربيا (وهذه الظاهرة تسمى بالحث الكهرومغناطيسي وهى أساس عمل المولدات الكهربائيةوالمحركات الكهربيةوالمحول الكهربي), وبالمثل يخلق حقل كهربي متغير حقلا مغناطيسيا ؛ وبسبب هذه التبادلية ما بين الحقلين الكهربي والمغناطيسي يصبح من الطبيعى أن نعتبرهم وجهان لعملة واحدة ألا وهى المجال الكهرومغناطيسي .
ينشئ المجال المغناطيسي نتيجة لحركة الشحنات الكهربية (كمثال:التيار الكهربائي) ، ويسبب المجال المغناطيسي في وجود تلك القوي المغناطيسية المصاحبة للمغناطيس .
ماذا تدرس الكهرومغناطيسية؟
تدرس الكهرومغناطيسية التفاعل الذي يتم بين الجسيمات المشحونة وبين المجالات الكهربائية والمجالات المغناطيسية. ويمكن تقسيم الكهرومغناطيسية إلى؛ كهرباء ساكنة أو "إلكتروستاتيكا" وهي تدرس الشحنات والحقول الكهربائية الساكنة، والديناميكا الكهربائية أو "إلكتروديناميكا" وهو يصف التفاعل بين الشحنات المتحركة والإشعاع الكهرومغناطيسي. ومع أن المعرفة الكهرباء والمغنطيسية تطورت منذ القدم بشكل منفصل، فقد توصلت النظرية الكلاسيكية للكهرومغناطيسية، خلال القرنين الثامن و التاسع عشر، إلى تحديد العلاقة بين الظاهرتين من خلال قانون لورنتز ومعادلات ماكسويل. وتمكنت هذه الأخيرة من وصف الموجات الكهرومغناطيسية وفهم الطبيعة الموجية للضوء.
تهتم الكهرباء الساكنة بدراسة الظواهر المرتبطة بالأجسام المشحونة في حالة السكون، والقوى التي تسلطها على بعضها البعض كما يصفها قانون كولوم. ويمكن تحليل سلوك هذه الأجسام من تجاذب أو تنافر من خلال معرفة القطبية والمجال الكهربائي المحيط بها، حيث يكون متناسبا مع مقدار الشحنة والأبعاد التي تفصلها. للكهرباء الساكنة عدة تطبيقات، بدءا من تحليل الظواهر الكهرومغناطيسية مثل العواصف الرعدية إلى المكثفات التي تستعمل الهندسة الكهربائية.
وعندما تتحرك الأجسام المشحونة كهربائيا في حقل كهرومغناطيسي فإنها تنتج مجالا مغناطيسيا يحيط بها فتختص الديناميكا الكهربائية بوصف الأثار التي تنتج عن ذلك من مغناطيسية وإشعاع الكهرومغناطيسي وحث كهرومغناطيسي. وتنظوي هذه المواضيع ضمن ما يعرف بالديناميكا الكهربائية الكلاسيكية، حيث تشرح معادلات ماكسويل هذه الظواهر بطريقة جيدة وعامة. وتفضي هذه النظريات إلى تطبيقات مهمة ومنها المولدات الكهربائية والمحركات الكهربائية. وفي العشرينات من القرن العشرين، ظهرت نظرية الديناميكا الكهربائية الكمومية وهي تتضمن قوانين الميكانيكا الكمومية، و تصف التفاعل بين الإشعاع الكهرومغناطيسي والمادة عن طريق تبادل الفوتونات. وهناك صياغة نسبية تقدم تصحيحات لحساب حركة الأجسام التي تسير بسرعات تقارب سرعة الضوء. تتدخل هذه الظواهر في معجلات الجسيمات و الأنابيب الكهربائية التي تحمل فروق جهد وتيارات كهربائية عالية.
تعتبر القوى والظواهر الناجمة عن الكهرومغناطيسية من أكثر الأمور المحسوسة في حياتنا اليومية بعد تلك التي تسببها الجاذبية. فعلى سبيل المثال، الضوء عبارة عن موجة كهرومغناطيسية مرئية تشع من جسيمات مَشحونة ومُعَجلة. وتجد مبادئ الكهرومغناطيسية إلى يومنا هذا العديد من التطبيقات التقنية والعلمية والطبية. وما الأجهزة الكهربائية مثل الراديو، والتلفاز، والهاتف، والقطارات المغناطيسية المعلقة، والألياف البصرية، وأجهزة الليزر إلا بضع أمثلة عن هذه التطبيقات التي صنعت تقدما نوعيا في تاريخ البشرية.
القوة الكهرومغناطيسية
القوة الكهرومغناطيسية هى القوة التى يؤثر بها المجال الكهرومغناطيسي علي الجسيمات الكهربية .
القوة الكهرومغناطيسية هى واحدة من بين أربع قوي أساسية في الطبيعة ؛ وباقى تلك القوي الأساسية هى القوي النووية القوية (وهى تلك المسئولة عن ترابط نواة الذرة),والقوي النووية الضعيفةوالجاذبية ؛ فأي قوة في عالمنا عبارة عن تجميع لنسب مختلفة من هذه القوي الأربع الأساسية.
القوي الكهرومغناطيسية هى المسئولة عمليا عن كل مظاهر الحياة اليومية العادية فيما عدا الجاذبية؛فكل القوي المؤثرة في ربط مابين الذرات وبعضها البعض يمكن ارجاعها إلى القوة الكهرومغناطيسية التى تؤثر على الجسيمات الكهربية في الذرة من الكتروناتوبروتونات؛ وبذلك يمكن اعتبار قوي "الشد" و"الدفع" التى نتعرض لها في حياتنا اليومية العادية عند الاصطدام بالأجسام العادية آتية من قوى الترابط ما بين الذرات المكونة لأجسامنا وتلك الذرات المكوة للأجسام التى صدمناها.
المغناطيس الكهربائي
المغناطيس الكهربـائي عبـارة عـن مغناطيس تتولد فيه المغناطيسية فقـط بسـبب تـدفق تيـار كهربي خلال سلك ما. وعادة ما تـُصنع المغناطيسـات الكهربيـة من ملف من السلك بعدد لفات كبير لزيادة التأثير المغناطيسي. ويُمكن زيادة المجال المغناطيسي الذي ينتجه الملـف بـوضع مـادة مغناطيسـية، كـقضيب حـديدي، داخل الملفات. ويتسـبب التيـار المـار خلال الملف في تحول الحديد إلى مغناطيس مؤقت.
الموجات الكهرومغناطيسية
ينتقل الضوء ، والموجات اللاسلكية، وأشعة إكس، وصـور الطاقـة الإشعاعي الأخرى خلال الفضاء كموجــــات طاقــــة تـســـمى الموجـــات الكهرومغناطيسية. ولتلك الموجات قمة وقاع، تمامًا كالأمواج التي تتكون عندما نلقي بحجر في الماء الساكن. وتُـسمى المسافة بين قمـم الموجات بطول الموجة، وتقاس بالمتر. ويُـسمى عدد الموجات فـي الثانيـة بـالتردد ويقـاس بـالهرتز. وتنتقـل جـميع الموجات الكهرومغناطيسية بسرعة الضوء، وهي تردد موجة كهرومغنطيسية مضروبًا في طول الموجة نفسها.
لا بد و أنكم تعلمون أننا محاطون و بشكل مستمر و من جميع الجهات بأنواع مختلفة من أمواج الطاقة قليل منها مرئي و غالبيتها غير مرئية منها ما هو من صنع الطبيعة كالأمواج الضوئية التي تأتينا من الشمس و الأشعة الكونية و منها ما هو من صنع الإنسان كالأمواج الضوئية القادمة من المصابيح و الأمواج اللاسلكية الناتجة عن الهاتف الخلوي ( الجوال ) .
إذا تغاضينا عن أمواج الطاقة الميكانيكية ( كالأمواج الصوتية ) فإننا نستطيع أن نجزم بان معظم الأمواج الموجودة من حولنا هي أمواج ذات طبيعة كهرومغناطيسية و التي تشكل بمجموعها ما يسمى بالطيف الكهرومغناطيسي .
الآن لو أردنا أن نتحدث عن الطيف الكهرومغناطيسي نفسه فلا بد أن نذكركم بالجزء الأكثر شعبية منه أو الجزء الذي يعرفه معظمكم وهو الطيف الضوئي ( أو طيف ألوان قوس قزح ) أو ما يسمى علميا بطيف الضوء المرئي و على الرغم من أنه لا يشكل إلا جزءا بسيطا من الطيف الكهرومغناطيسي إلا أنه و في نفس الوقت قد ساهم في فهم المبدأ العام بشكل ممتاز .
الطيف الكهرومغناطيسي و عملية الإشعاع لن نفهمها تماما دون المرور بمفاهيم مثل طول الموجة و التردد و لكن قبل أن نخوض أيضا في هذين المفهومين نحن بحاجة للتعرف على طبيعة هذه الطاقة التي نسميها الطاقة الكهرومغناطيسية .
طبيعة الإشعاع الكهرومغناطيسي ( الطاقة الكهرومغناطيسية ) :
إن الاسم الذي أطلق على هذا الطاقة هو نتيجة لتفسير العلماء لطبيعتها فكلمة كهرومغناطيسي تجمع بين كلمتي كهربائي و مغناطيسي وهذا بالضبط التفسير الذي قدمه العلماء لهذه الطاقة فهي ( أي الإشعاع الكهرومغناطيسي ) عبارة عن سيل من الطاقة في مسار يحوي حقلين مغناطيسي و كهربائي تسير في الحقل المغناطيسي أمواج مغناطيسية و تسير في الحقل الكهربائي أمواج كهربائية و تتراوح الطاقة الكهرومغناطيسية جيئة و ذهابا بين هذين الحقلين أو المجالين بحيث أنه عندما تزداد شدة أحد الحقلين تنقص شدة الآخر و العكس بالعكس .
هذا يعني أن الموجتين ( أو نوعي الطاقة في الحقلين المختلفين ) مرتبطين معا و يتغيران معا بشكل متعاكس و تسمى سرعة التغير هذه بالتردد و بمعنى آخر أن التردد هو عدد المرات في الثانية التي تتغير بها الطاقة في الحقلين من أقصى قيمة لها و تعود لنفس هذه القيمة القصوى بمعنى أخر أنها عدد الأمواج التي تتشكل من هذا التغير خلال ثانية واحدة .
و لأن الطاقة الكهرومغناطيسية تتألف من تركيبة لموجتين مغناطيسية و كهربائية فقد ارتأى العلماء أن يسموها الأمواج الكهرومغناطيسية لأن طبيعتها موجية .
إذن التردد هو عدد المرات التي تصل فيها الطاقة الموجية لأقصى قيمة لها في اتجاه واحد . أما طول الموجة فهو مقياس آخر للموجة مرتبط بالتردد فهو يمثل المسافة بين أقصى قيمتين متتاليتين أو قاعين متتاليتين في نفس الاتجاه للطاقة الموجية .
أما حرصنا على الفهم الصحيح للطبيعة الموجية و المختلطة ( بين الكهربائية و المغناطيسية ) فلأنه سيشكل القاعدة الأساسية لفهم أنواع الطيف الكهرومغناطيسي و تقسيماته ( تصنيفاته ) وفقا للتردد أو لطول الموجة .
ومن الأمواج الكهرومغناطيسية التي تحيط بنا أشعة غاما - أشعة إكس ( الأشعة السينية ) - الأشعة فوق البنفسجية - الضوء المرئي ( الذي نستطيع تحسسه بالعين ) الأشعة تحت الحمراء - الأمواج المايكروية كالتي تستخدم بأفران المايكروويف - أمواج الرادار - الإرسال التلفزيوني - و أمواج الراديو و غيرها.