الصفحة الرسمية لمراجعة الرياضيات - منتديات الجلفة لكل الجزائريين و العرب

العودة   منتديات الجلفة لكل الجزائريين و العرب > منتديات التعليم المتوسط > منتدى السنة الرابعة متوسط

في حال وجود أي مواضيع أو ردود مُخالفة من قبل الأعضاء، يُرجى الإبلاغ عنها فورًا باستخدام أيقونة تقرير عن مشاركة سيئة ( تقرير عن مشاركة سيئة )، و الموجودة أسفل كل مشاركة .

آخر المواضيع

الصفحة الرسمية لمراجعة الرياضيات

 
 
أدوات الموضوع انواع عرض الموضوع
قديم 2014-05-07, 17:35   رقم المشاركة : 10
معلومات العضو
أستاذ علي
قدماء المنتدى
 
الصورة الرمزية أستاذ علي
 

 

 
الأوسمة
المشرف المميز المشرف المميز 2014 المشرف المميز لسنة 2013 وسام التميز 
إحصائية العضو










Question

اننا ننتظر منكم الاجابة على المسألة السابقة
وهذا بإستنتاج الحل البياني من خلال الرسم


لاننسى هذا الدرس
تتمة لشرح مفصل لطرق حل جملة معادلتين :
أولا : طريقة الحل بالتعويض :


ملاحظة نستطيع بعد ايجاد قيمة x نعوض في المعادلة الثالثة
ثانيا : طريقة الحل بالجمع :
أولا نحسب x بطريقة الجمع :
ثانيا نحسب y بنفس الطريقة الجمع :

ملاحظة هامة لمشاهدة المحتوى نضغط الصورة اعلاه


ثالثا : طريقة الحل بالجمع والتعويض :
يمكن دمج الطريقين معا وتصبح طريقة الحل بالجمع والتعويض كيف ذالك ؟
يتم ذالك بحساب المجهول الأول xبطريقة الجمع أما المجهول y طريقة التعويض وهذا بتعويض قيمة x في احدى المعادلات اما الأولى او الثانية ومن الأفضل ابسط معادلة فيكون الحل كالتالي :


طريقة الحل بالتساوي :
هناك طرق اخرى يمكن استعملها لحل الجملة معادليتن منها طريقة التساوي بين المعادلة الأولى والمعادلة الثانية من حيث المجاهيل لنتابع الشرح

هناك طرق اخرى للحل سيتم دراستها مستقبلا ( مرحلة الثانوي ) منها طريقة الحل بالحساب المحدد
كل الطرق السابقة تسمى في الرياضيات الحل الجبري لجملة معادلتين
اما طريقة الحل البياني لحل جملة معادلتين وغالبا ما تطرح هته الأسئلة في وضعيات الادماجية للدالة التآلفية والخطية على الشكل التالي حل جبريا ثم بيانيا الجملة التالية

هيا لنحاول حل الجملة التالية بيانيا :
مثلا بأحدى الطرق السابقة يكون :
هي لنحاول الحل بيانيا :
ثم نمثل بيانيا في معلم متعامد ومتجانس وعلى ورقة مليمترية من الأحسن المستقيم ( d )
ثم نمثل بيانيا في نفس معلم السابق وعلى ورقة مليمترية من الأحسن المستقيم ( g )

و من خلال الرسم نجد أن احداثيي نقطة تقاطع المستقمين ( d) و ( g) هو الحل البياني للجملة السابقة

تأكد من ذالك









آخر تعديل أستاذ علي 2014-05-07 في 18:16.
 

الكلمات الدلالية (Tags)
لمراجعة, الرياضيات, الرسمية, الصفية


تعليمات المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا تستطيع إرفاق ملفات
لا تستطيع تعديل مشاركاتك

BB code is متاحة
كود [IMG] متاحة
كود HTML معطلة

الانتقال السريع

الساعة الآن 14:08

المشاركات المنشورة تعبر عن وجهة نظر صاحبها فقط، ولا تُعبّر بأي شكل من الأشكال عن وجهة نظر إدارة المنتدى
المنتدى غير مسؤول عن أي إتفاق تجاري بين الأعضاء... فعلى الجميع تحمّل المسؤولية


2006-2024 © www.djelfa.info جميع الحقوق محفوظة - الجلفة إنفو (خ. ب. س)

Powered by vBulletin .Copyright آ© 2018 vBulletin Solutions, Inc