مساعدة في المشروع الثاني للانجليزية - منتديات الجلفة لكل الجزائريين و العرب

العودة   منتديات الجلفة لكل الجزائريين و العرب > منتديات التعليم الثانوي > منتدى السنة الثانية ثانوي 2AS > المواد العلمية و التقنية

المواد العلمية و التقنية كل ما يخص المواد العلمية و التقنية : الرياضيات - العلوم الطبيعة والحياة - العلوم الفيزيائية - الهندسة المدنية - هندسة الطرائق - الهندسة الميكانيكية - الهندسة الكهربائية - التسيير المحاسبي و المالي - تسيير و اقتصاد

في حال وجود أي مواضيع أو ردود مُخالفة من قبل الأعضاء، يُرجى الإبلاغ عنها فورًا باستخدام أيقونة تقرير عن مشاركة سيئة ( تقرير عن مشاركة سيئة )، و الموجودة أسفل كل مشاركة .

آخر المواضيع

مساعدة في المشروع الثاني للانجليزية

إضافة رد
 
أدوات الموضوع انواع عرض الموضوع
قديم 2014-01-12, 21:19   رقم المشاركة : 1
معلومات العضو
محمد الجزائري150865
عضو مشارك
 
إحصائية العضو










افتراضي مساعدة في المشروع الثاني للانجليزية

السسلام عليكم ورحمة الله تعالى وبركاته
اريدد مساعدة في مشروع2 للانجليزية
projectn2: choose a phenomenon that our planet sussering from
take about its causes,consequences and suggest solutions
ساعدوني بليز









 


رد مع اقتباس
قديم 2014-01-14, 11:41   رقم المشاركة : 2
معلومات العضو
محمد الجزائري150865
عضو مشارك
 
إحصائية العضو










افتراضي

اين انتم










رد مع اقتباس
قديم 2014-01-14, 12:08   رقم المشاركة : 3
معلومات العضو
farah100
عضو مجتهـد
 
إحصائية العضو










افتراضي

i need it to










رد مع اقتباس
قديم 2014-01-14, 12:10   رقم المشاركة : 4
معلومات العضو
أم أسيل الاثرية
عضو مميّز
 
الصورة الرمزية أم أسيل الاثرية
 

 

 
إحصائية العضو










افتراضي

اين انتم









رد مع اقتباس
قديم 2014-01-14, 12:25   رقم المشاركة : 5
معلومات العضو
محمد الجزائري150865
عضو مشارك
 
إحصائية العضو










افتراضي

ساعدونا خاوتنا










رد مع اقتباس
قديم 2014-01-14, 12:35   رقم المشاركة : 6
معلومات العضو
samara lara
عضو محترف
 
الصورة الرمزية samara lara
 

 

 
إحصائية العضو










افتراضي

اقتباس:
المشاركة الأصلية كتبت بواسطة محمد الجزائري150865 مشاهدة المشاركة
السسلام عليكم ورحمة الله تعالى وبركاته
اريدد مساعدة في مشروع2 للانجليزية
projectn2: Choose a phenomenon that our planet sussering from
take about its causes,consequences and suggest solutions
ساعدوني بليز
أخي اعطيني ظاهرة طبيعية راك حاب دير عليها بحث ونعاونك









رد مع اقتباس
قديم 2014-01-14, 12:59   رقم المشاركة : 7
معلومات العضو
محمد الجزائري150865
عضو مشارك
 
إحصائية العضو










افتراضي

براكين‏ ممكن تساعديني ؟










رد مع اقتباس
قديم 2014-01-14, 13:02   رقم المشاركة : 8
معلومات العضو
samara lara
عضو محترف
 
الصورة الرمزية samara lara
 

 

 
إحصائية العضو










افتراضي

اقتباس:
المشاركة الأصلية كتبت بواسطة محمد الجزائري150865 مشاهدة المشاركة
براكين‏ ممكن تساعديني ؟
اآآه اوكي اصبر عليا شوية اوكي خويا









رد مع اقتباس
قديم 2014-01-14, 13:11   رقم المشاركة : 9
معلومات العضو
**خليصة **
عضو محترف
 
الصورة الرمزية **خليصة **
 

 

 
إحصائية العضو










افتراضي






An earthquake (also known as a tremor or temblor) is the result of a sudden release of energy in the Earth's crust that creates seismic waves. Earthquakes are recorded with a seismometer, also known as a seismograph. The moment magnitude of an earthquake is conventionally reported, or the related and mostly obsolete Richter magnitude, with magnitude 3 or lower earthquakes being mostly imperceptible and magnitude 7 causing serious damage over large areas. Intensity of shaking is measured on the modified Mercalli scale.


At the Earth's surface, earthquakes manifest themselves by shaking and sometimes displacing the ground. When a large earthquake epicenter is located offshore, the seabed sometimes suffers sufficient displacement to cause a tsunami. The shaking in earthquakes can also trigger landslides and occasionally volcanic activity.


In its most generic sense, the word earthquake is used to describe any seismic event—whether a natural phenomenon or an event caused by humans—that generates seismic waves. Earthquakes are caused mostly by rupture of geological faults, but also by volcanic activity, landslides, mine blasts, and nuclear experiments. An earthquake's point of initial rupture is called its focus or hypocenter. The term epicenter refers to the point at ground level directly above this.



Naturally occurring earthquakes





Tectonic earthquakes will occur anywhere within the earth where there is sufficient stored elastic strain energy to drive fracture propagation along a fault plane. In the case of transform or convergent type plate boundaries, which form the largest fault surfaces on earth, they will move past each other smoothly and aseismically only if there are no irregularities or asperities along the boundary that increase the frictional resistance. Most boundaries do have such asperities and this leads to a form of stick-slip behaviour. Once the boundary has locked, continued relative motion between the plates leads to increasing stress and therefore, stored strain energy in the volume around the fault surface. This continues until the stress has risen sufficiently to break through the asperity, suddenly allowing sliding over the locked portion of the fault, releasing the stored energy. This energy is released as a combination of radiated elastic strainseismic waves, frictional heating of the fault surface, and cracking of the rock, thus causing an earthquake. This process of gradual build-up of strain and stress punctuated by occasional sudden earthquake failure is referred to as the Elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth or is converted into heat generated by friction. Therefore, earthquakes lower the Earth's available elastic potential energy and raise its temperature, though these changes are negligible compared to the conductive and convective flow of heat out from the Earth's deep interior.


Earthquake fault types


There are three main types of fault that may cause an earthquake: normal, reverse (thrust) and strike-slip. Normal and reverse faulting are examples of dip-slip, where the displacement along the fault is in the direction of dip and movement on them involves a vertical component. Normal faults occur mainly in areas where the crust is being extended such as a divergent boundary. Reverse faults occur in areas where the crust is being shortened such as at a convergent boundary. Strike-slip faults are steep structures where the two sides of the fault slip horizontally past each other ; transform boundaries are a particular type of strike-slip fault. Many earthquakes are caused by movement on faults that have components of both dip-slip and strike-slip; this is known as oblique slip.


Earthquakes away from plate boundaries


Where plate boundaries occur within continental lithosphere, deformation is spread out a over a much larger area than the plate boundary itself. In the case of the San Andreas fault continental transform, many earthquakes occur away from the plate boundary and are related to strains developed within the broader zone of deformation caused by major irregularities in the fault trace (e.g. the “Big bend” region). The Northridge earthquake was associated with movement on a blind thrust within such a zone. Another example is the strongly oblique convergent plate boundary between the Arabian and Eurasian plates where it runs through the northwestern part of the Zagros mountains. The deformation associated with this plate boundary is partitioned into nearly pure thrust sense movements perpendicular to the boundary over a wide zone to the southwest and nearly pure strike-slip motion along the Main Recent Fault close to the actual plate boundary itself. This is demonstrated by earthquake focal mechanisms.
All tectonic plates have internal stress fields caused by their interactions with neighbouring plates and sedimentary loading or unloading (e.g. deglaciation). These stresses may be sufficient to cause failure along existing fault planes, giving rise to intraplate earthquakes.


Shallow-focus and deep-focus earthquakes


The majority of tectonic earthquakes originate at the ring of fire in depths not exceeding tens of kilometers. Earthquakes occurring at a depth of less than 70 km are classified as 'shallow-focus' earthquakes, while those with a focal-depth between 70 and 300 km are commonly termed 'mid-focus' or 'intermediate-depth' earthquakes. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, deep-focus earthquakes may occur at much greater depths (ranging from 300 up to 700 kilometers). These seismically active areas of subduction are known as Wadati-Benioff zones. Deep-focus earthquakes occur at a depth at which the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep-focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure.
Earthquakes and volcanic activity


Earthquakes also often occur in volcanic regions and are caused there, both by tectonic faults and by the movement of magma in volcanoes. Such earthquakes can serve as an early warning of volcanic eruptions, like during the Mount St. Helenseruption of 1980.


Earthquake clusters


Most earthquakes form part of a sequence, related to each other in terms of ******** and time.


Aftershocks


An aftershock is an earthquake that occurs after a previous earthquake, the mainshock. An aftershock is in the same region of the main shock but always of a smaller magnitude. If an aftershock is larger than the main shock, the aftershock is redesignated as the main shock and the original main shock is redesignated as a foreshock. Aftershocks are formed as the crust around the displaced fault plane adjusts to the effects of the main shock.



Earthquake swarms



February 2008 earthquake swarm near Mexicali




Earthquake swarms are sequences of earthquakes striking in a specific area within a short period of time. They are different from earthquakes followed by a series of aftershocks by the fact that no single earthquake in the sequence is obviously the main shock, therefore none have notable higher magnitudes than the other. An example of an earthquake swarm is the 2004 activity at Yellowstone National Park.



Earthquake storms


Sometimes a series of earthquakes occur in a sort of earthquake storm, where the earthquakes strike a fault in clusters, each triggered by the shaking or stress redistribution of the previous earthquakes. Similar to aftershocks but on adjacent segments of fault, these storms occur over the course of years, and with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in the 20th century and has been inferred for older anomalous clusters of large earthquakes in the Middle East.



Size and frequency of occurrence


Minor earthquakes occur nearly constantly around the world in places like California and Alaska in the U.S., as well as in Guatemala. Chile, Peru, Indonesia, Iran, Pakistan, the Azores in Portugal, Turkey, New Zealand, Greece, Italy, and Japan, but earthquakes can occur almost anywhere, including New York City, London, and Australia. Larger earthquakes occur less frequently, the relationship being exponential; for example, roughly ten times as many earthquakes larger than magnitude 4 occur in a particular time period than earthquakes larger than magnitude 5. In the (low seismicity) United Kingdom, for example, it has been calculated that the average recurrences are: an earthquake of 3.7 - 4.6 every year, an earthquake of 4.7 - 5.5 every 10 years, and an earthquake of 5.6 or larger every 100 years. This is an example of the Gutenberg-Richter law.
The number of seismic stations has increased from about 350 in 1931 to many thousands today. As a result, many more earthquakes are reported than in the past, but this is because of the vast improvement in instrumentation, rather than an increase in the number of earthquakes. The USGS estimates that, since 1900, there have been an average of 18 major earthquakes (magnitude 7.0-7.9) and one great earthquake (magnitude 8.0 or greater) per year, and that this average has been relatively stable. In recent years, the number of major earthquakes per year has decreased, although this is thought likely to be a statistical fluctuation rather than a systematic trend. More detailed statistics on the size and frequency of earthquakes is available from the USGS.
Most of the world's earthquakes (90%, and 81% of the largest) take place in the 40,000-km-long, horseshoe-shaped zone called the circum-Pacific seismic belt, also known as the Pacific Ring of Fire, which for the most part bounds the Pacific Plate. Massive earthquakes tend to occur along other plate boundaries, too, such as along the Himalayan Mountains. Humans can cause earthquakes for example by constructing large dams and buildings, drilling and injecting liquid into wells, and by coal mining and oil drilling.
With the rapid growth of mega-cities such as Mexico City, Tokyo or Tehran, in areas of high seismic risk, some seismologists are warning that a single quake may claim the lives of up to 3 million people.



Effects/impacts of earthquakes



1755 copper engraving depicting Lisbon in ruins and in flames after the 1755 Lisbon earthquake. A tsunami overwhelms the ships in the harbor.



There are many effects of earthquakes including, but not limited to the following:


Shaking and ground rupture


Shaking and ground rupture are the main effects created by earthquakes, principally resulting in more or less severe damage to buildings or other rigid structures. The severity of the local effects depends on the complex combination of the earthquake magnitude, the distance from epicenter, and the local geological and geomorphological conditions, which may amplify or reduce wave propagation. The ground-shaking is measured by ground acceleration.
Specific local geological, geomorphological, and geostructural features can induce high levels of shaking on the ground surface even from low-intensity earthquakes. This effect is called site or local amplification. It is principally due to the transfer of the seismic motion from hard deep soils to soft superficial soils and to effects of seismic energy focalization owing to typical geometrical setting of the deposits.

Ground rupture is a visible breaking and displacement of the earth's surface along the trace of the fault, which may be of the order of several metres in the case of major earthquakes. Ground rupture is a major risk for large engineering structures such as dams, bridges and nuclear power stations and requires careful mapping of existing faults to identify any likely to break the ground surface within the life of the structure.



Landslides and avalanches


Landslides are a major geologic hazard because they can happen at any place in the world, much like earthquakes. Severe storms, earthquakes, volcanic activity, coastal wave attack, and wildfires can all produce slope instability. Landslide danger may be possible even though emergency personnel are attempting rescue.



Fires



Fires of the 1906 San Francisco earthquake



Following an earthquake, fires can be generated by break of the electrical power or gas lines. In the event of water mains rupturing and a loss of pressure, it may also become difficult to stop the spread of a fire once it has started. For example, the deaths in the 1906 San Francisco earthquake were caused more by the fires than by the earthquake itself.


Soil liquefaction


Soil liquefaction occurs when, because of the shaking, water-saturated granular material (such as sand) temporarily loses its strength and transforms from a solid to a liquid. Soil liquefaction may cause rigid structures, as buildings or bridges, to tilt or sink into the liquefied deposits. This can be a devastating effect of earthquakes. For example, in the 1964 Alaska earthquake, many buildings were sunk into the ground by soil liquefaction, eventually collapsing upon themselves.



Tsunami



The tsunami of the 2004 Indian Ocean earthquake




Tsunamis are long-wavelength, long-period sea waves produced by an sudden or abrupt movement of large volumes of water. In the open ocean, the distance between wave crests can surpass 100 kilometers, and the wave periods can vary from five minutes to one hour. Such tsunamis travel 600-800 kilometers per hour, depending on water depth. Large waves produced by an earthquake or a submarine landslide can overrun nearby coastal areas in a matter of minutes. Tsunamis can also travel thousands of kilometers across open ocean and wreak destruction on far shores hours after the earthquake that generated them.

Ordinarily, subduction earthquakes under magnitude 7.5 on the richter scale do not cause tsunamis. However, there have been recorded instances, yet most destructive tsunamis are caused by magnitude 7.5 plus earthquakes.
Tsunamis are distinct from tidal waves, because in a tsunami, water flows straight instead of in a circle like the typical wave. Earthquake-triggered landslides into the sea can also cause tsunamis.


Floods


A flood is an overflow of any amount of water that reaches land Floods usually occur because of the volume of water within a body of water, such as a river or lake, exceeds the total capacity of the formation, and as a result some of the water flows or sits outside of the normal perimeter of the body. However, floods may be secondary effects of earthquakes, if dams are damaged. Earthquakes may cause landslips to dam rivers, which then collapse and cause floods.
The terrain below the Sarez Lake in Tajikistan is in danger of catastrophic flood if the landslide dam formed by the earthquake, known as the Usoi Dam, were to fail during a future earthquake. Impact projections suggest the flood could affect roughly 5 million people.


Human impacts


Earthquakes may result in disease, lack of basic necessities, loss of life, higher insurance premiums, general property damage, road and bridge damage, and collapse of buildings or destabilization of the base of buildings which may lead to collapse in future earthquakes. Earthquakes can also lead to volcanic eruptions, which cause further damages such as substantial crop damage, like in the "Year Without a Summer" (1816).
Most of civilization agrees that human death is the most significant human impact of earthquakes.


Preparation for earthquakes


Today, there are ways to protect and prepare possible sites of earthquakes from severe damage, through the following processes: Earthquake engineering, Earthquake preparedness, Household seismic safety, Seismic retrofit (including special fasteners, materials, and techniques), Seismic hazard, Mitigation of seismic motion, and Earthquake prediction.


Earthquakes in culture



Mythology and religion


In Norse mythology, earthquakes were explained as the violent struggling of the god Loki. When Loki, god of mischief and strife, murdered Baldr, god of beauty and light, he was punished by being bound in a cave with a poisonous serpent placed above his head dripping venom. Loki's wife Sigyn stood by him with a bowl to catch the poison, but whenever she had to empty the bowl the poison would drip on Loki's face, forcing him to jerk his head away and thrash against his bonds, causing the earth to tremble.
In Greek mythology, Poseidon was the god of and cause earthquakes. When he was in a bad mood, he would strike the ground with a trident, causing this and other calamities. He also used earthquakes to punish and inflict fear upon people as revenge.


Popular culture


In modern popular culture, the portrayal of earthquakes is shaped by the memory of great cities laid waste, such as Kobe in 1995 or San Francisco in 1906.[34] Fictional earthquakes tend to strike suddenly and without warning.[34] For this reason, stories about earthquakes generally begin with the disaster and focus on its immediate aftermath, as in Short Walk to Daylight (1972), The Ragged Edge (1968) or Aftershock: Earthquake in New York (1998). A notable example is Heinrich von Kleist's classic novella, The Earthquake in Chile, which describes the destruction of Santiago in 1647. Haruki Murakami's short fiction collection, After the Quake, depicts the consequences of the Kobe earthquake of 1995.
The most popular single earthquake in fiction is the hypothetical "Big One" expected of California's San Andreas Fault someday, as depicted in the novels Richter 10 (1996) and Goodbye California (1977) among other works.[34] Jacob M. Appel's widely-anthologized short story, A Comparative Seismology, features a con artist who convinces an elderly woman that an apocalyptic earthquake is imminent. In Pleasure Boating in Lituya Bay, one of the stories in Jim Shepard's Like You'd Understand, Anyway, the "Big One" leads to an even more devastating tsunami










رد مع اقتباس
قديم 2014-01-14, 13:12   رقم المشاركة : 10
معلومات العضو
samara lara
عضو محترف
 
الصورة الرمزية samara lara
 

 

 
إحصائية العضو










افتراضي

هادي يا خويا المقدمة

introduction


The Earth has volcanoes because it is hot inside. In some places it is hot enough to turn solid rock into liquid rock. Geologists call the liquid rock magma. The magma rises towards the surface
because it is less dense than the surrounding rock (like a hot air balloon rising through the cooler air). If the magma reaches the surface it is called lava and lava accumulates to make a volcano.










رد مع اقتباس
قديم 2014-01-14, 13:14   رقم المشاركة : 11
معلومات العضو
**خليصة **
عضو محترف
 
الصورة الرمزية **خليصة **
 

 

 
إحصائية العضو










افتراضي

Volcano
A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot, molten rock, ash, and gases to escape from below the surface. Volcanic activity involving the extrusion of rock tends to form mountains or features like mountains over a period of time.
Volcanoes are generally found where tectonic plates are pulled apart or come together. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by "divergent tectonic plates" pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by "convergent tectonic plates" coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust (called "non-hotspot intraplate volcanism"), such as in the African Rift Valley, the Wells Gray-Clearwater Volcanic Field and the Rio Grande Rift in North America and the European Rhine Graben with its Eifel volcanoes.
Volcanoes can be caused by "mantle plumes". These so-called "hotspots" , for example at Hawaii, can occur far from plate boundaries. Hotspot volcanoes are also found elsewhere in the solar system, especially on rocky planets and moons.
Plate tectonics and hotspots


Divergent plate boundaries
At the mid-oceanic ridges, two tectonic plates diverge from one another. New oceanic crust is being formed by hot molten rock slowly cooling and solidifying. The crust is very thin at mid-oceanic ridges due to the pull of the tectonic plates. The release of pressure due to the thinning of the crust leads to adiabatic expansion, and the partial melting of the mantle. This melt causes the volcanism and makes the new oceanic crust. Most divergent plate boundaries are at the bottom of the oceans, therefore most volcanic activity is submarine, forming new seafloor. Black smokers or deep sea vents are an example of this kind of volcanic activity. Where the mid-oceanic ridge is above sea-level, volcanic islands are formed, for example, Iceland.
Convergent plate boundaries
Subduction zones are places where two plates, usually an oceanic plate and a continental plate, collide. In this case, the oceanic plate subducts, or submerges under the continental plate forming a deep ocean trench just offshore. The crust is then melted by the heat from the mantle and becomes magma. This is due to the water ******* lowering the melting temperature. The magma created here tends to be very viscous due to its high silica *******, so often does not reach the surface and cools at depth. When it does reach the surface, a volcano is formed. Typical examples for this kind of volcano are Mount Etna and the volcanoes in the Pacific Ring of Fire.
Hotspots
Hotspots are not usually located on the ridges of tectonic plates, but above mantle plumes, where the convection of Earth's mantle creates a column of hot material that rises until it reaches the crust, which tends to be thinner than in other areas of the Earth. The temperature of the plume causes the crust to melt and form pipes, which can vent magma. Because the tectonic plates move whereas the mantle plume remains in the same place, each volcano becomes dormant after a while and a new volcano is then formed as the plate shifts over the hotspot. The Hawaiian Islands are thought to be formed in such a manner, as well as the Snake River Plain, with the Yellowstone Caldera being the part of the North American plate currently above the hotspot.
Indonesia - Lombok: Mount Rinjani - outbreak in 1994


Volcanic features
The most common perception of a volcano is of a conical mountain, spewing lava and poisonous gases from a crater at its summit. This describes just one of many types of volcano, and the features of volcanoes are much more complicated. The structure and behavior of volcanoes depends on a number of factors. Some volcanoes have rugged peaks formed by lava domes rather than a summit crater, whereas others present landscape features such as massive plateaus. Vents that issue volcanic material (lava, which is what magma is called once it has escaped to the surface, and ash) and gases (mainly steam and magmatic gases) can be located anywhere on the landform. Many of these vents give rise to smaller cones such as Puʻu ʻŌʻō on a flank of Hawaii's Kīlauea.
Other types of volcano include cryovolcanoes (or ice volcanoes), particularly on some moons of Jupiter, Saturn and Neptune; and mud volcanoes, which are formations often not associated with known magmatic activity. Active mud volcanoes tend to involve temperatures much lower than those of igneous volcanoes, except when a mud volcano is actually a vent of an igneous volcano.


Skjaldbreiًur, a shield volcano whose name means "broad shield"
Shield volcanoes
Shield volcanoes, so named for their broad, shield-like profiles, are formed by the eruption of low-viscosity lavas tha can flow a great distance from a vent, but not generally explode catastrophically. The Hawaiian volcanic chain is a series of shield cones, and they are common in Iceland, as well.
Lava domes
Lava domes are built by slow eruptions of highly viscous lavas. They are sometimes formed within the crater of a previous volcanic eruption (as in Mount Saint Helens), but can also form independently, as in the case of Lassen Peak. Like stratovolcanoes, they can produce violent, explosive eruptions, but their lavas generally do not flow far from the originating vent.
Cinder cones
Volcanic cones or cinder cones result from eruptions that erupt mostly small pieces of scoria and pyroclastics (both resemble cinders, hence the name of this volcano type) that build up around the vent. These can be relatively short-lived eruptions that produce a cone-shaped hill perhaps 30 to 400 meters high. Most cinder cones erupt only once. Cinder cones may form as flank vents on larger volcanoes, or occur on their own. Parيcutin in Mexico and Sunset Crater in Arizona are examples of cinder cones.


Mayon Volcano, a stratovolcano
Stratovolcanoes (composite volcano)
Main article: Strato volcano
Stratovolcanoes are tall conical mountains composed of lava flows and other ejecta in alternate layers, the strata that give rise to the name. Stratovolcanoes are also known as composite volcanoes. Strato/composite volcanoes are made of cinders, ash and lava. The volcanoes are made by another volcano. Cinders and ash pile on top of each other, then lava flows on top and dries and then the process begins again. Classic examples include Mt. Fuji in Japan, Mount Mayon in the Philippines, and Mount Vesuvius and Stromboli in Italy.


The Lake Toba volcano created a caldera 100 km long
Supervolcanoes
Main article: Supervolcano
Supervolcano is the popular term for a large volcano that usually has a large caldera and can potentially produce devastation on an enormous, sometimes continental, scale. Such eruptions would be able to cause severe cooling of global temperatures for many years afterwards because of the huge volumes of sulfur and ash erupted. They are the most dangerous type of volcano. Examples include Yellowstone Caldera in Yellowstone National Park of western USA, Lake Taupo in New Zealand and Lake Toba in Sumatra, Indonesia. Supervolcanoes are hard to identify centuries later, given the enormous areas they cover. Large igneous provinces are also considered supervolcanoes because of the vast amount of basalt lava erupted.


Pillow lava (NOAA)
Submarine volcanoes
Submarine volcanoes are common features on the ocean floor. Some are active and, in shallow water, disclose their presence by blasting steam and rocky debris high above the surface of the sea. Many others lie at such great depths that the tremendous weight of the water above them prevents the explosive release of steam and gases, although they can be detected by hydrophones and discoloration of water because of volcanic gases. Pumice rafts may also appear. Even large submarine eruptions may not disturb the ocean surface. Because of the rapid cooling effect of water as compared to air, and increased buoyancy, submarine volcanoes often form rather steep pillars over their volcanic vents as compared to above-surface volcanoes. They may become so large that they break the ocean surface as new islands. Pillow lava is a common eruptive product of submarine volcanoes.


Herًubreiً, one of the tuyas in Iceland
Subglacial volcanoes
Subglacial volcanoes develop underneath icecaps. They are made up of flat lava flows atop extensive pillow lavas and palagonite. When the icecap melts, the lavas on the top collapse leaving a flat-topped mountain. Then, the pillow lavas also collapse, giving an angle of 37.5 degrees[citation needed]. These volcanoes are also called table mountains, tuyas or (uncommonly) mobergs. Very good examples of this type of volcano can be seen in Iceland, however, there are also tuyas in British Columbia. The origin of the term comes from Tuya Butte, which is one of the several tuyas in the area of the Tuya River and Tuya Range in northern British Columbia. Tuya Butte was the first such landform analyzed and so its name has entered the geological literature for this kind of volcanic formation. The Tuya Mountains Provincial Park was recently established to protect this unusual landscape, which lies north of Tuya Lake and south of the Jennings River near the boundary with the Yukon Territory.
Antarctica eruption
In January, 2008, the British Antarctic Survey (Bas) scientists led by Hugh Corr and David Vaughan, reported (in the journal Nature Geoscience) that 2,200 years ago, a volcano erupted under Antarctica ice sheet (based on airborne survey with radar images). The biggest eruption in the last 10,000 years, the volcanic ash was found deposited on the ice surface under the Hudson Mountains, close to Pine Island Glacier.[1]
Erupted material
Lava composition


Pāhoehoe Lava flow at Hawaii (island). The picture shows few overflows of a main lava channel.
Another way of classifying volcanoes is by the composition of material erupted (lava), since this affects the shape of the volcano. Lava can be broadly classified into 4 different compositions (Cas & Wright, 1987):
• If the erupted magma contains a high percentage (>63%) of silica, the lava is called felsic.
o Felsic lavas (or rhyolites) tend to be highly viscous (not very fluid) and are erupted as domes or short, stubby flows. Viscous lavas tend to form stratovolcanoes or lava domes. Lassen Peak in California is an example of a volcano formed from felsic lava and is actually a large lava dome.
o Because siliceous magmas are so viscous, they tend to trap volatiles (gases) that are present, which cause the magma to erupt catastrophically, eventually forming stratovolcanoes. Pyroclastic flows (ignimbrites) are highly hazardous products of such volcanoes, since they are composed of molten volcanic ash too heavy to go up into the atmosphere, so they hug the volcano's slopes and travel far from their vents during large eruptions. Temperatures as high as 1,200 °C are known to occur in pyroclastic flows, which will incinerate everything flammable in their path and thick layers of hot pyroclastic flow deposits can be laid down, often up to many meters thick. Alaska's Valley of Ten Thousand Smokes, formed by the eruption of Novarupta near Katmai in 1912, is an example of a thick pyroclastic flow or ignimbrite deposit. Volcanic ash that is light enough to be erupted high into the Earth's atmosphere may travel many kilometres before it falls back to ground as a tuff.
• If the erupted magma contains 52–63% silica, the lava is of intermediate composition.
o These "andesitic" volcanoes generally only occur above subduction zones (e.g. Mount Merapi in Indonesia).
• If the erupted magma contains <52% and >45% silica, the lava is called mafic (because it contains higher percentages of magnesium (Mg) and iron (Fe)) or basaltic. These lavas are usually much less viscous than rhyolitic lavas, depending on their eruption temperature; they also tend to be hotter than felsic lavas. Mafic lavas occur in a wide range of settings:
o At mid-ocean ridges, where two oceanic plates are pulling apart, basaltic lava erupts as pillows to fill the gap;
o Shield volcanoes (e.g. the Hawaiian Islands, including Mauna Loa and Kilauea), on both oceanic and continental crust;
o As continental flood basalts.
• Some erupted magmas contain <=45% silica and produce ultramafic lava. Ultramafic flows, also known as komatiites, are very rare; indeed, very few have been erupted at the Earth's surface since the Proterozoic, when the planet's heat flow was higher. They are (or were) the hottest lavas, and probably more fluid than common mafic lavas.
Lava texture
Two types of lava are named according to the surface texture: ʻAʻa (pronounced [ʔaʔa]) and pāhoehoe (pronounced IPA: paːhoehoe), both words having Hawaiian origins. ʻAʻa is characterized by a rough, clinkery surface and is what most viscous and hot lava flows look like. However, even basaltic or mafic flows can be erupted as ʻaʻa flows, particularly if the eruption rate is high and the slope is steep. Pāhoehoe is characterized by its smooth and often ropey or wrinkly surface and is generally formed from more fluid lava flows. Usually, only mafic flows will erupt as pāhoehoe, since they often erupt at higher temperatures or have the proper chemical make-up to allow them to flow at a higher fluidity.
Volcanic activity


A volcanic fissure and lava channel.


Mount St. Helens in May 1980, shortly after the eruption of May 18
A popular way of classifying magmatic volcanoes is by their frequency of eruption, with those that erupt regularly called active, those that have erupted in historical times but are now quiet called dormant, and those that have not erupted in historical times called extinct. However, these popular classifications—extinct in particular—are practically meaningless to scientists. They use classifications which refer to a particular volcano's formative and eruptive processes and resulting shapes, which was explained above.
There is no real consensus among volcanologists on how to define an "active" volcano. The lifespan of a volcano can vary from months to several million years, making such a distinction sometimes meaningless when compared to the lifespans of humans or even civilizations. For example, many of Earth's volcanoes have erupted dozens of times in the past few thousand years but are not currently showing signs of eruption. Given the long lifespan of such volcanoes, they are very active. By human lifespans, however, they are not.
Scientists usually consider a volcano to be active if it is currently erupting or showing signs of unrest, such as unusual earthquake activity or significant new gas emissions. Many scientists also consider a volcano active if it has erupted in historic time. It is important to note that the span of recorded history differs from region to region; in the Mediterranean, recorded history reaches back more than 3,000 years but in the Pacific Northwest of the United States, it reaches back less than 300 years, and in Hawaii, little more than 200 years. The Smithsonian Global Volcanism Program's definition of 'active' is having erupted within the last 10,000 years.
Dormant volcanoes are those that are not currently active (as defined above), but could become restless or erupt again. Confusion however, can arise because many volcanoes which scientists consider to be active are referred to as dormant by laypersons or in the media.
Extinct volcanoes are those that scientists consider unlikely to erupt again. Whether a volcano is truly extinct is often difficult to determine. Since "supervolcano" calderas can have eruptive lifespans sometimes measured in millions of years, a caldera that has not produced an eruption in tens of thousands of years is likely to be considered dormant instead of extinct. For example, the Yellowstone Caldera in Yellowstone National Park is at least 2 million years old and hasn't erupted violently for approximately 640,000 years, although there has been some minor activity relatively recently, with hydrothermal eruptions less than 10,000 years ago and lava flows about 70,000 years ago. For this reason, scientists do not consider the Yellowstone Caldera extinct. In fact, because the caldera has frequent earthquakes, a very active geothermal system (i.e. the entirety of the geothermal activity found in Yellowstone National Park), and rapid rates of ground uplift, many scientists consider it to be an active volcano.
Notable volcanoes
Main article: List of volcanoes
The 16 current Decade Volcanoes are:
• Avachinsky-Koryaksky, Kamchatka, Russia
• Colima, Mexico
• Mount Etna, Sicily, Italy
• Galeras, Colombia
• Mayon Volcano, Philippines (World's only / most perfect cone)
• Mauna Loa, Hawaii, USA
• Merapi, Indonesia
• Nyiragongo, Democratic Republic of the Congo
• Mount Rainier, Washington, USA
• Sakurajima, Japan
• Santamaria/Santiaguito, Guatemala
• Santorini, Greece
• Taal Volcano, Philippines
• Teide, Canary Islands, Spain
• Tungurahua, Ecuador
• Ulawun, Papua New Guinea
• Mount Unzen, Japan
• Vesuvius, Italy

Effects of volcanoes


Volcanic "injection"


Solar radiation reduction from volcanic eruptions


Sulfur dioxide emissions by volcanoes.


Average concentration of sulfur dioxide over the Sierra Negra Volcano (Galapagos Islands) from October 23–November 1, 2005
There are many different kinds of volcanic activity and eruptions: phreatic eruptions (steam-generated eruptions), explosive eruption of high-silica lava (e.g., rhyolite), effusive eruption of low-silica lava (e.g., basalt), pyroclastic flows, lahars (debris flow) and carbon dioxide emission. All of these activities can pose a hazard to humans. Earthquakes, hot springs, fumaroles, mud pots and geysers often accompany volcanic activity.
The concentrations of different volcanic gases can vary considerably from one volcano to the next. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other principal volcanic gases include hydrogen sulfide, hydrogen chloride, and hydrogen fluoride. A large number of minor and trace gases are also found in volcanic emissions, for example hydrogen, carbon monoxide, halocarbons, organic compounds, and volatile ****l chlorides.
Large, explosive volcanic eruptions inject water vapor (H2O), carbon dioxide (CO2), sulfur dioxide (SO2), hydrogen chloride (HCl), hydrogen fluoride (HF) and ash (pulverized rock and pumice) into the stratosphere to heights of 16–32 kilometres (10–20 mi) above the Earth's surface. The most significant impacts from these injections come from the conversion of sulfur dioxide to sulfuric acid (H2SO4), which condenses rapidly in the stratosphere to form fine sulfate aerosols. The aerosols increase the Earth's albedo—its reflection of radiation from the Sun back into space - and thus cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere. Several eruptions during the past century have caused a decline in the average temperature at the Earth's surface of up to half a degree (Fahrenheit scale) for periods of one to three years. The sulfate aerosols also promote complex chemical reactions on their surfaces that alter chlorine and nitrogen chemical species in the stratosphere. This effect, together with increased stratospheric chlorine levels from chlorofluorocarbon pollution, generates chlorine monoxide (ClO), which destroys ozone (O3). As the aerosols grow and coagulate, they settle down into the upper troposphere where they serve as nuclei for cirrus clouds and further modify the Earth's radiation balance. Most of the hydrogen chloride (HCl) and hydrogen fluoride (HF) are dissolved in water droplets in the eruption cloud and quickly fall to the ground as acid rain. The injected ash also falls rapidly from the stratosphere; most of it is removed within several days to a few weeks. Finally, explosive volcanic eruptions release the greenhouse gas carbon dioxide and thus provide a deep source of carbon for biogeochemical cycles.
Gas emissions from volcanoes are a natural contributor to acid rain. Volcanic activity releases about 130 to 230 teragrams (145 million to 255 million short tons) of carbon dioxide each year.[2] Volcanic eruptions may inject aerosols into the Earth's atmosphere. Large injections may cause visual effects such as unusually colorful sunsets and affect global climate mainly by cooling it. Volcanic eruptions also provide the benefit of adding nutrients to soil through the weathering process of volcanic rocks. These fertile soils assist the growth of plants and various crops. Volcanic eruptions can also create new islands, as the magma cools and solidifies upon contact with the water.
Volcanoes on other planetary bodies


Olympus Mons (Latin, "Mount Olympus") is the tallest known mountain in our solar system, located on the planet Mars.
Main articles: Geology of the Moon, Geology of Mars, Volcanism on Io, and Volcanism on Venus
The Earth's Moon has no large volcanoes and no current volcanic activity, although recent evidence suggests it may still possess a partially molten core.[3] However, the Moon does have many volcanic features such as maria (the darker patches seen on the moon), rilles and domes.
The planet Venus has a surface that is 90% basalt, indicating that volcanism played a major role in shaping its surface. The planet may have had a major global resurfacing event about 500 million years ago,[4] from what scientists can tell from the density of impact craters on the surface. Lava flows are widespread and forms of volcanism not present on Earth occur as well. Changes in the planet's atmosphere and observations of lightning, have been attributed to ongoing volcanic eruptions, although there is no confirmation of whether or not Venus is still volcanically active. However, radar sounding by the Magellan probe revealed evidence for comparatively recent volcanic activity at Venus's highest volcano Maat Mons, in the form of ash flows near the summit and on the northern flank.
There are several extinct volcanoes on Mars, four of which are vast shield volcanoes far bigger than any on Earth. They include Arsia Mons, Ascraeus Mons, Hecates Tholus, Olympus Mons, and Pavonis Mons. These volcanoes have been extinct for many millions of years,[5] but the European Mars Express spacecraft has found evidence that volcanic activity may have occurred on Mars in the recent past as well.[5]


The Tvashtar volcano erupts a plume 330 km (205 mi) above the surface of Jupiter's moon Io.
Jupiter's moon Io is the most volcanically active object in the solar system because of tidal interaction with Jupiter. It is covered with volcanoes that erupt sulfur, sulfur dioxide and silicate rock, and as a result, Io is constantly being resurfaced. Its lavas are the hottest known anywhere in the solar system, with temperatures exceeding 1,800 K (1,500 °C). In February 2001, the largest recorded volcanic eruptions in the solar system occurred on Io.[6] Europa, the smallest of Jupiter's Galilean moons, also appears to have an active volcanic system, except that its volcanic activity is entirely in the form of water, which freezes into ice on the frigid surface. This process is known as cryovolcanism, and is apparently most common on the moons of the outer planets of the solar system.
In 1989 the Voyager 2 spacecraft observed cryovolcanoes (ice volcanoes) on Triton, a moon of Neptune, and in 2005 the Cassini-Huygens probe photographed fountains of frozen particles erupting from Enceladus, a moon of Saturn.[7] The ejecta may be composed of water, liquid nitrogen, dust, or methane compounds. Cassini-Huygens also found evidence of a methane-spewing cryovolcano on the Saturnian moon Titan, which is believed to be a significant source of the methane found in its atmosphere.[8] It is theorized that cryovolcanism may also be present on the Kuiper Belt Object Quaoar.
Etymology
Volcano is thought to derive from Vulcano, a volcanic island in the Aeolian Islands of Italy whose name in turn originates from Vulcan, the name of a god of fire in Roman mythology. The study of volcanoes is called volcanology, sometimes spelled vulcanology.
The Roman name for the island Vulcano has contributed the word for volcano in most modern European ********s.
In culture
Past beliefs


Kircher's model of the Earth's internal fires, from Mundus Subterraneus
Many ancient accounts ascribe volcanic eruptions to supernatural causes, such as the actions of gods or demigods. To the ancient Greeks, volcanoes' capricious power could only be explained as acts of the gods, while 16th/17th-century German astronomer Johannes Kepler believed they were ducts for the Earth's tears. [9] One early idea counter to this was proposed by Jesuit Athanasius Kircher (1602–1680), who witnessed eruptions of Mount Etna and Stromboli, then visited the crater of Vesuvius and published his view of an Earth with a central fire connected to numerous others caused by the burning of sulfur, bitumen and coal.
Various explanations were proposed for volcano behavior before the modern understanding of the Earth's mantle structure as a semisolid material was developed. For decades after awareness that compression and radioactive materials may be heat sources, their contributions were specifically discounted. Volcanic action was often attributed to chemical reactions and a thin layer of molten rock near the surface










رد مع اقتباس
قديم 2014-01-14, 13:17   رقم المشاركة : 12
معلومات العضو
محمد الجزائري150865
عضو مشارك
 
إحصائية العضو










افتراضي

شكرا لكم










رد مع اقتباس
قديم 2014-01-14, 13:36   رقم المشاركة : 13
معلومات العضو
**خليصة **
عضو محترف
 
الصورة الرمزية **خليصة **
 

 

 
إحصائية العضو










افتراضي

لاشكر على واجب
اهلين بيك










رد مع اقتباس
قديم 2014-01-14, 14:26   رقم المشاركة : 14
معلومات العضو
samara lara
عضو محترف
 
الصورة الرمزية samara lara
 

 

 
إحصائية العضو










افتراضي

أسفة جداااااااا اخي على التأخير و لكن اظن ان الاخت ساعدتك
شكرااا كحلوشتي










رد مع اقتباس
إضافة رد

الكلمات الدلالية (Tags)
للانجليزية, مساعدة, المشروع, الثاني


تعليمات المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا تستطيع إرفاق ملفات
لا تستطيع تعديل مشاركاتك

BB code is متاحة
كود [IMG] متاحة
كود HTML معطلة

الانتقال السريع

الساعة الآن 11:19

المشاركات المنشورة تعبر عن وجهة نظر صاحبها فقط، ولا تُعبّر بأي شكل من الأشكال عن وجهة نظر إدارة المنتدى
المنتدى غير مسؤول عن أي إتفاق تجاري بين الأعضاء... فعلى الجميع تحمّل المسؤولية


2006-2024 © www.djelfa.info جميع الحقوق محفوظة - الجلفة إنفو (خ. ب. س)

Powered by vBulletin .Copyright آ© 2018 vBulletin Solutions, Inc