1-2 ندفع كرية معدنية صغيرة علي طاولة أفقيا ملساء , فتنطلق في اتجاه حافة الطاولة .
أكمل التصوير المتعاقب لحركة الكرية قبل مغادرة الطاولة
ما هو نوع حركة الكرية علي الطاولة ؟ لماذا؟
حركة الكرية علي الطاولة مستقيمة منتظمة لان المسافات المتتالية المقطوعة في نفس المجالات الزمنية متساوية أي الحركة مستقيمة منتظمة و حسب مبدأ العطالة فالكرة تكون شبه معزولة .
- ما هو مسارها بعد مغادرة الطاولة؟
بعد مغادرة الطاولة يكون مسار الكرية منحني .
أكمل التصوير المتعاقب لحركة الكرية بعد مغادرة الطاولة
- هل هناك قوة مطبقة عليها فوق الطاولة ؟
نعم , هناك قوتين تؤثران علي الكرية وهي قوة جذب الأرض للأجسام ويرمز لها بــ وقوة رد فعل الطاولة وهي تعاكس قوة جذب الأرض و يكون لهاتين القوتين نفس الحامل و نفس الشدة .
- هل هناك قوة مطبقة عليها بعد مغادرة الطاولة ؟ علل
نعم ,بعد مغادرة الطاولة هناك قوة تؤثر علي الكرية وهي قوة جذب الأرض للأجسام ويرمز لها بـ
والدليل علي ذلك المسار ليس مستقيم و المسافات المتتالية المقطوعة في نفس المجالات الزمنية ليست متساوية أي الحركة ليست منتظمة و حسب مبدأ العطالة فالكرة خاضعة لقوة
مثل بشعاع كيفي ,في موضعين مختلفين ,هذه القوة إن وجدت .
تحديد السرعة اللحظية في اللحركات المنحنية :
لحسب قيمة السرعة اللحظية في الحركات المنحنية نعتمد علي تعريف السرعة المتوسطة حيث
هي المسافة المقطوعة من طرف المتحرك بين الموضعين المعتبرين و الفاصل الزمني المستغرق لقطع هذه المسافة.
1-1 تحديد قيمة السرعةالمتوسطة بيانيا
لتحديد قيمة السرعةالمتوسطة بيانيا في حركة منحنية نعتمد علي مثال :
نعتبر التسجيل الممثل في الشكل المقابل , الممثل لحركة منحنية كيفية ,
حيث مواضع المتحرك تفصلها مجالات زمنية متساوية .
السرعة المتوسطة بين الموضعين , مثلا هي :
لان المسافة المقطوعة من طرف المتحرك بين لحظتي مرور المتحرك من و هي القوس وباعتبار صغير جدا ,نقبل الآن القوس و الوتر بين الموضعين يكونان منطبقين تقريبا ,أي في مثالنا هذا ,نقبل أن :
في هذه الحالة يمكن ان نكتب السرعة المتوسطة بين و على الشكل الذي اعتدناه في الحركة المستقيمة :
بهذه الطريقة يمكن تحديد بيانيا قيمة السرعة المتوسطة بين الموضعين يفصلهما مجال زمني بقياس طول الوتر الواصل بين هذين الموضعين مباشرة علي التسجيل ثم قسمته علي . في مثالنا هذا:
1- نقيس بالمسطرة طول الوتر ثم نحوله إلى الطول الحقيقي بالاعتماد علي سلم الرسم .
2- نحسب قيمة السرعة المتوسطة بالعلاقة :
1-2 تحديد و تمثيل السرعة اللحظية في الحـركة المنحنية
بالمقارنة مع حساب السرعة اللحظية في الحركة المستقيمة و بما أن المجال الزمني المستعمل لحساب السرعة المتوسطة قصير جدا ,يمكن اعتبار إن قيمة السرعة المتوسطة هنا تساوي قيمة السرعة اللحظية في منتصف المجال الزمني , أي في مثالنا , عند الموضع , يمكن أن نكتب :
ونمثلها بشعاع خواصه :
- مبدأه
- حامله مماسي للمسار في
- جهته هي جهة الحركة
- قيمته :
باستعمال سلم رسم مناسب .
2- تحديد وتمثيل شعاع تغير السرعة في الحركة المنحنية.
أ- تحديد شعاع تغير السرعة في الحركة المنحنية
لتحديد , عمليا . شعاع تغير السرعة فيى الحركة المنحنية , نعتمد الخطوات المتبعة فى حالة الحركات المستقيمة.
نستعين بالتسجيل الممثل فيى الشكل المقابل , حيث مواضع المتحرك تفصلها مجالات زمنية متساوية .
لتحديد شعاع تغير السرعة في الموضع ,نتبع الخطوات التالية :
- نعتبر الموضعين , ,المجاورين للموضع المعتبر ,و نمثل فيهما شعاعي السرعة اللحظية
و ,على الترتيب باستعمال سلم تمثيل السرعة .
نعتبر ان شعاع تغير السرعة في الموضع يساوي الفرق الشعاعي بين شعاعي السرعة و ,
أي أن
-تمثيل شعاع تغير السرعة في الحركة المنحنية
- نختار نقطة كيفية 0 خارج التسجيل.
- انطلاقا من هذه النقطة 0 نرسم شعاعا مسايرا للشعاع
- انطلاقا من هذه النقطة 0 نرسم شعاعا مسايرا للشعاع
- نرسم الشعاع , بحيث تكون بدايته في نهاية و نهايته في نهاية بهذا الترتيب ,
-بما أن , يسايران , على الترتيب, فان يساير