مشاهدة النسخة كاملة : كيف تزال حالة عدم التعيين هنا --
انسام الريح
2019-01-11, 21:54
السلام عليكم اخوتي ..سؤالي ....
كيف تزال حالة عدم التعيين في هاته النهاية **
(lim X-ln(1+X^2
لما x تؤول الى +مالانهاية .. من فضلكم
« أبْجَدِيَّاتْ »
2019-01-11, 22:37
السلام عليكم اخوتي ..سؤالي ....
كيف تزال حالة عدم التعيين في هاته النهاية **
(lim x-ln(1+x^2
لما x تؤول الى +مالانهاية .. من فضلكم
عليكم السلام ورحمة الله وبركاته
سأقدّم لكِ تلميحا : استخدمي ما بداخل القوسين.
انسام الريح
2019-01-11, 22:56
عليكم السلام ورحمة الله وبركاته
سأقدّم لكِ تلميحا : استخدمي ما بداخل القوسين.
لقد توصلت الى الحل لكني لست متأكدة
yousra.dz
2019-01-11, 23:28
في هاد الحالة رجعيه على شكل كسر لانو من الشكل LN a -LN b
يرجع داخل ln كاين x على (x²+1)
خرجي x عامل مشترك يبفى 1 على (1 على x + (x
الان عندنا النهاية تاع 1 على x هي 0 هنا يبقى x برك في المقام
امبعد واحد تاع البسط على x تاع المقام تجي 0 موجب
والنهاية تاع ln 0 هي ناقص مالانهاية
نتمنى تكوني فهمتي
yousra.dz
2019-01-11, 23:29
في هاد الحالة رجعيه على شكل كسر لانو من الشكل LN a -LN b
يرجع داخل ln كاين x على (x²+1)
خرجي x عامل مشترك يبفى 1 على (1 على x + (x
الان عندنا النهاية تاع 1 على x هي 0 هنا يبقى x برك في المقام
امبعد واحد تاع البسط على x تاع المقام تجي 0 موجب
والنهاية تاع ln 0 هي ناقص مالانهاية
نتمنى تكوني فهمتي
« أبْجَدِيَّاتْ »
2019-01-11, 23:45
لقد توصلت الى الحل لكني لست متأكدة
تفضّلي :')
https://b.top4top.net/p_1106mne8b1.jpg
تقومين في البداية بإخراج x كعامل مشترك
ثم الضرب في : (x^2+1) / (x^2+1)
ثم تبديل المقام بما أنه جداء
تتحصّلين على الشكل : Ln(x)/x الذي يؤول إلى الصفر
بينما : ( 1+x^2 قسمة x ) يؤول إلى + ما لا نهاية
ولأنه لدينا قبلهما : - 1
فإن النهاية تؤول إلى ناقص ما لا نهاية
انسام الريح
2019-01-12, 12:27
في هاد الحالة رجعيه على شكل كسر لانو من الشكل LN a -LN b
يرجع داخل ln كاين x على (x²+1)
خرجي x عامل مشترك يبفى 1 على (1 على x + (x
الان عندنا النهاية تاع 1 على x هي 0 هنا يبقى x برك في المقام
امبعد واحد تاع البسط على x تاع المقام تجي 0 موجب
والنهاية تاع ln 0 هي ناقص مالانهاية
نتمنى تكوني فهمتي
متصلحش نكتبوها هكاك بسك ل X ماهوش داخل ln
انسام الريح
2019-01-12, 12:30
تفضّلي :')
https://b.top4top.net/p_1106mne8b1.jpg
تقومين في البداية بإخراج x كعامل مشترك
ثم الضرب في : (x^2+1) / (x^2+1)
ثم تبديل المقام بما أنه جداء
تتحصّلين على الشكل : Ln(x)/x الذي يؤول إلى الصفر
بينما : ( 1+x^2 قسمة x ) يؤول إلى + ما لا نهاية
ولأنه لدينا قبلهما : - 1
فإن النهاية تؤول إلى ناقص ما لا نهاية
النهاية تخرج + مالانهاية كي نخدمو بالتزايد المقارن
0 في مالانهاية حالة عدم تعيين كيفاه نحيتيها
^_^أنس^_^
2019-01-12, 12:57
اولا نكتبها على شكل كسر يعني ( ln (e^x /1+x²
ومباعد نخرج x² عامل مشترك
راح يبقى في البسط e^x/x² نهاية شهيرة تروح ب + مالا نهاية
وفي المقام راح يبقى واحد لانو 1/x² تروح ب 0
وفي الاخير راح يكون عندنا ln + مالا نهاية وهي + مالا نهاية
ان شاء الله نكون وصلت الفكرة
انسام الريح
2019-01-12, 20:51
اولا نكتبها على شكل كسر يعني ( ln (e^x /1+x²
ومباعد نخرج x² عامل مشترك
راح يبقى في البسط e^x/x² نهاية شهيرة تروح ب + مالا نهاية
وفي المقام راح يبقى واحد لانو 1/x² تروح ب 0
وفي الاخير راح يكون عندنا ln + مالا نهاية وهي + مالا نهاية
ان شاء الله نكون وصلت الفكرة
بارك الله فيك خي
bouss2013
2019-01-13, 16:45
السلام عليكم
الى الاخت انسام الريح
طريقة الاخ ^_^أنس^_^ صحيحة و اليكم في مايلي طريقة اخرى
http://www.mediafire.com/view/r99ospnthylewl9/%D8%A7%D9%86%D8%B3%D8%A7%D9%85%20%D8%A7%D9%84%D8%B 1%D9%8A%D8%AD1.png
انسام الريح
2019-01-13, 18:19
السلام عليكم
الى الاخت انسام الريح
طريقة الاخ ^_^أنس^_^ صحيحة و اليكم في مايلي طريقة اخرى
https://www.mediafire.com/view/r99ospnthylewl9/%D8%A7%D9%86%D8%B3%D8%A7%D9%85%20%D8%A7%D9%84%D8%B 1%D9%8A%D8%AD1.png
بارك الله فيك استاذ نفس طريقتي الا انني استخرجت ال X حتى من (Ln(1+1/X*2 فاصبت ببعض الاخلاط هههه على العموم جزاك الله خيرا
vBulletin® v3.8.10 Release Candidate 2, Copyright ©2000-2025, TranZ by Almuhajir