المساعد الشخصي الرقمي

مشاهدة النسخة كاملة : ممكن طلب


hi ba
2014-01-21, 15:07
السلام عليكم
كيف حالكم ان شاء الله تكونو بخير
كيف حال الدراسة
غدا عندنا فرض في الرياضيات و كي بديت نراجع
معرفتش كيفية حساب سابقة
ممكن تساعدوني بالطريقة



مع تحياتي اختكم في الله هيبة

أحْمد أمير
2014-01-21, 15:22
هنا طريقتان لحساب السابقة الاولى
بيانيا و ذلك برسم مستقيم موازي لمحور الفواصل معادلته y=عدد حيث ذلك العدد هو الصورة
ثم نقاط تقاطع المستقيم مع منحني الدالة نسقطها علي محور الفواصل لنجد السوابق الممكنة لهذه الصورة
طريقة 2حسابيا:
يقول احسب السوابق الممكنة ل5 بالدالة f
في حالة تكون الدالة معرفة بدستور نكتب مثلا
f(x)=2x+1
و f(x)=5
يكافئ منطقيا
2x+1=5
نحل المعادلة
نجد
X=2
و منه السوابق الممكنة للعدد 5 هي 2
و نستطيع الكتابة
S={2}
ملاحظة : يمكن ان يكون للصورة عدة سوابق بينما لا يمكن السابقة ان يكون لها عدة صور
#

hi ba
2014-01-21, 15:35
ah merci bcp wache n9oulak
mais loukan ya3touna hadi dala
2x²+5x-3
kifache nhalouha

أحْمد أمير
2014-01-21, 15:43
عندما يعطيك دالة يجب ان يعطيك الصورة التي تريدين ان تجدي سوابقها

hi ba
2014-01-21, 15:45
oui lokan y9oulouna
ماهي سابقة (3-)

boudiarzinadjihane
2014-01-21, 15:53
9riTou l momayaz deLTA wela mazzale :D ?!

أحْمد أمير
2014-01-21, 16:08
هل احلها بيانيا ام حسابيا ؟

أحْمد أمير
2014-01-21, 16:16
إذا كان بيانيا فالسوابق الممكنة للعدد (-3) هي :
http://latex.codecogs.com/gif.latex?S%3D%5Cleft%20%28%200%2C-2.5%20%5Cright%20%29

أحْمد أمير
2014-01-21, 16:25
التمثيل البياني لتلك الدالة هو
http://www.djelfa.info/vb/ ygZPWAAAgAElEQVR4nO2d7ZLbuA4F8eh6c+0PZz2iLNr6AIhDs rtupe5I2jYowicjTBLbEsm6rqF+mAizLycFO02wpMGw6BdgC8G Ho/B6dZdmj2lWNRIW/QJsIfhQCS/ZBpMtbBisemKtnrrEewu9hFvcnXMW2cWqvz823vEFr9olvLrYm ixh9SLCS9apLwxxEl5O6PcP4SUhjHDqC0OchJcT+v3zNLy84Mk ffPAOr2jo/Ggs+gXYQvChq/Ci7Rtg0S/ALoIPhBeUWPUEMy9Vp74wxNnVzMsrvLrYmrSZl622vfT15fbg7 surR7bh9cRzeOT9q7vZ8cjnLZ2hQq/+Wf4OqVe4PfJqezo89MjfoR1F3zzjvZFewjfuzjmL7GLVfOflh X7/nBQ6v+ohPP+DA8y8oMQavAYbCQ4QXlBiDV6DjQQHCC8oseoJZl 6qTn1hiJOZlxP6/fN05kV4yTr1hSHOfsLL8duuLraG8LqD/jZEOPWFIU7CS9UpF16O8PwPDvQz86Lh22ANXoO9BAcILyixBq/BXoIDhBeUWPUEMy9Vp74wxMnMS9UpN/MivGSd+sIQJ+Gl6hw5vJZlWdd1zm2IcOoLHzqP3/yEl6pTLrx8YQoAJ6l+IBAzLyixNi/DdsIZvn0OYyfhRas3w9q8DDsKP3k3CeEFZ7DqCWZeqk594T1n4/AKWrVveIlsjaawehHhJevUF95wbt/zhNdW6GgLchJed9DfhginvvCGc/3gw3hN+BPCq3eh86vWYBAA52HmBWewNi/DjsJ5CC84gzV7JTYVftLysTEI+rwZVj3h/Rwbsan6T+8RTn1hiJOZl6pTbuZFeMk69YUhzh7Cy73Ju9gawus O+tsQ4dQXhjgJL1WnXHi5wywAHtHDzIsmb4lZqw/pfv1RrzavxZGRjtT+/JdOhe8juz/PmF7P2Ef+DjWA35fgPnznBSVWPRHwHKs/EXAXRjj1hSFOZl6qzixh9SLCS9apLwxxEl6qTsLrplNcGOHUF4 Y4CS9Vp1x4RcBEAO7DzAtKrOWLsbVwH/nwor0bYy1fjN2F+xBeUGLVE8y8VJ36whCn/Mwr4h+t62Jr5GZehJesU18Y4iS8VJ1ThNfi/a21/jZEOPWFIU7CS9UpF15BMBeAmzDzghJr/HpsMNyE8IISa/x6bDDchPCCEqueYOal6tQXhjiZeak65WZehJesU18Y4tQOr1dj z7k1hNd9p7IwwqkvDHESXqpOufAKgrkA3ER75kVjt8cavx57DD chvKDEGr8eeww3IbygxKonmHmpOvWFIU5mXqpOuZkX4SXr1BeG OAkvVecs4bW45pf+NkQ49YUhTsJL1SkXXnEwHYA7MPOCEmv/kmwz3EE4vGjpFKz9S7LTcAfCC0qseoKZl6pTXxjiFJ55vVt6zq 2Rm3kRXrJOfWGIk/BSdaaFl622vfT15fbg7svnR7Y7/dD8/tW3Qt8jn7d0hgrd+2cx3QrfP2p03x06/NsOLs1hQAB3YOYFJZbyqmw2XIbwghJLedVON9vMTPgtNDjCd77 Tfu4dq56IHMJ5bXZokQdn/w+vd4TVsmx72ckiz8di41WrOBnYqzqzhNWLCK+Dsx/h9eXKhfByNjoLvSrcNvOcW0N4PXWGCnffam2Dxjbsrn+H1+c1x QXnAvFnkbfp4h1CeMk65cIrlO5mBLXw2uXRl4z74rkaXpOien+ 6a+ZhsKwX7mvLv4TX9hrCKxDV+9NXJ4+EZb1wX1t+Mrx2/5/w8kT1/vTVySNh1RPBz7EuW95y5rUdWu0eFT/P7lLpJ8uV8NKfWYQ4mXmpOuVmXoRXcfzrH4m457yNvjDESXipO gkvB2eQcDvMqh3/kmLD9Eqyk/BSdcqFVzRMCuAakjMv2jgRy3phdh2uQXhBiWW9MLsO1yC8oMSq J5h5qTr1hSFOyZnXro3n3Bq5mVeDgp7nl/42RDj1hSFOwkvVSXj5ONWEEU59YYiT8FJ1yoVXA5gXwAWYeUGJ Jb42Gw8XILygxBJfm40/A3/n8R+S94EeTsSqJ5h57U59/Dn72t/K3v9X6/Ef0L+N/swixKk38/ps4Dm3Rm7mRXhd+w/Dwmv3l70XpVU3dRJeqk7Cy8cZJ9z+CxDbLw//6YjivzoKr8P/8PPLZRNenzV40cU7hPCSdcqFVwM6mhdsw+V9ZPt/PnNtd7Zm+/It26fh89UnQm/JHTXwkFjia3e097XMWo7i6Ux47S4+/Nbs00B4SdFRAw+JWd6Hhq/rmvjql44U31X9f+SP8sHwfc2y/b5sZ/51ZPtCf57PejTuT4Mjy+cdy67w1cA69cx25O/QjqJvPDgUPvy9q02R/07VOTz7d7CMtprt+0t8Xtxm1UJOvVUz88oVVi8ivGSd+sIQJ+G l6iS83Jy5woNvsvSKjBaGOMXC67B159waufBqAyNPOIvYwJ7WT cdyX54OgLMQXlBiuS9PB8BZCC8oseoJZl6qTn1hiJOZl6pTbuZ FeMk69YUhTsJL1Ul4uTmlhBFOfWGIk/BSdcqFVzOYHcApmHlBiWUXQBPAOQgvKLHsAmgCOIdSeNG0Clj1 RKvn2Cd9oP/0HuHUF4Y4lWZetaadc2vkZl6El6xTXxjiJLxUnYSXp1NHGOHUF 4Y4CS9Vp1x4tYQJAvyGmReUWHYBy0IrwBkILyix7AKWhVaAMxB eUGLVEw2fY2+3gv7Te4RTXxjiZOal6pSbeRFesk59YYhTJry+t OucW0N4OTtFhBFOfWGIk/BSdcqFV0uYIMBvZGZetKsIll3AstANcAbCC0osu4B/0BDwA8ILSqx6ou1z7L2G0H96j3DqC0OczLxUnXIzL8JL1qkvDH ESXqpOwovwGkcY4iS8VJ1p4WWrbS99fdn+yKshsl6dI/pHFpOo551cavdnwiN/h3JhCAo/0OhVGlUHyy7gH/QE/IDwghKrnmDmperUF4Y4NWZe3xt1zq3JElYvIrxknfrCECfhpeo kvAivcYQhTsJL1SkXXo1hlAA/YOYFJZZdwB+0BXyD8IISyy7gD9oCvkF4QYlVTzR/jr3RFvpP7xFOfWGIU2Dm9bNF59wauZkX4SXr1BeGOAkvVSfhRX iNIwxxEl6qTrnwag/TBPiGwMyLFpXCsgv4g86YmbXk4ArCC0osu4A/6Ixp+dz6g2YgvKDEqicynmOvNof+03uEU1941ZkSXsy8ehdWLy K8ZJ36wudOwitIGOEkvJaF8BpF+NDZZuZ1tcIzzTn81kgJnV/1IcwUJqc6rV/yZ140pxqWXUAB/TEzP3af8IISyy6ggP6Ylt9bT3hBiVVPJD3HXmoR/af3CKe+8Kqzi582MvNSE1YvIrxknfrCq871iA/jBeEZCK/ehdWLCC9Zp74wxEl4qTrlwisLJgtwDDMvKLHsAvbQInBManjRl oJYdgF76BI4hvCCErPaR2n/f9DafpD3uq7n/6v3ry0rvHrk85bOUKFj/9QG+S0rfLVl+92hw7/t4FJhe7ULJ4UM7AcQhjhTB/Yn23LOrckSVi9KXOH5/NLfhginvjDESXipOuXCKxHmC3AAMy8osewCDqBR4ADCC0osu4A DaBQ4gPCCEqueYOal6tQXhjjzZl40pKawehHhJevUF4Y4CS9VJ +H1B73SuzDESXipOuXCKxHmC3BA3syLhtTEsgs4gF6BAwgvKLH sAg6gV+AAwgtKrHoi9cGYP9DctTDEycxL1Sk38yK8ZJ36whAn4 aXqJLwKCK+uhSHOpPDiXwqQFTq/qhdMGWBP0syLVpTFsgs4ho6BPYQXlFh2AcfQMbCH8IISq55g5q Xq1BeGOJl5qTrlZl6El6xTXxjiJLxUnYTXHj4mr19hiJPwUnXK hVc6zBqggJkXlFh2AVVoGijICC+aUBnLLqAKfQMFhBeUWPVE9o MxM69+hSHOjJnX1fCac2vkZl4KK/zZOgpFtnfqC0OchJeqk/A6gPDqVBjiJLxUnWnhZTIfGv555P0Z6yL1cCTxyGIJr/4OL7W7wRFbUz9O6ieMS+EPBvZQYtkFfIPWgT8ILyix6gmBB2Nm Xp0KQ5zNZ143kmvOrckSVi9SWCHh1akwxEl4qToJrwMIr06FIU 7CS9UpF14iMHSAfzSfedF74lh2AT+ggeAfhBeUWHYBP6CB4B+E F5RY9YTGg/H3BhIpsrFTXxjiZOal6pSbeYmskPDqURjibBte977tmnNrCK9j CK8ehSFOwkvVKRdeIjB3gH+0nXnRePpYdgE/oIfgH4QXlFh2AT+gh+AfhBeUWPWExoMxM68ehSFOZl6qTrmZl8 gKCa8ehSFOwkvVSXhV+dJGOkW2dOoLQ5yEl6pTLrx0YPoAy9J0 5kXLdYFlF/AbOgmWhfCCPZZdwG/oJFgWwgv2WPWEzIMxM6/uhCHOhjOv2+E159bIzbx0Vkh4dScMcRJeqk7Cqwrh1Z0wxEl4q TrlwksKZhDAzAt2WHYBp6CZgPCCHZZdwCloJmgWXjRbL1j1hNK Dca2fpIps5tQXhjhbzbyehNecW5M287LVtpe+vtwe3H2ZcmTbT 9tr3r+mV/jlyOctnaFC9/5ZrFGF67rq7A4d/m0HlwpF33jwUHj4+6FakW2c+sIQJ995qTqzhM6vGgeTiNlh5gU lll3AWWip2SG8oMSyCzgLLTU7hBeUWPWE2IMxM6+OhCHOJjOvh 8k159bIzbzUVkh4dSQMcRJeqk7C6weEV0fCECfhpeqUCy81mET MTpOZF23WEZZdwAVorKkhvKDEsgu4AI01NYQXlFj1hN6D8WdjC RbZwKkvDHEy81J1ys28BFdIePUiDHESXqpOwus3hFcvwhBnfHg 9f2acc2vkwksQ5hFTEz/zosH6wrILuAC9NTWEF5RYdgEXoLemhvCCEque0HswZubVizDEy cxL1Sk38xJcIeHVizDESXipOgmvU+zaS7PIaKe+MMRJeKk65cJ LE6YS8xI886K1usOyC7gGHTYvhBeUWHYB16DD5oXwghKrnpB8M Gbm1YUwxBk883IJrzm3Rm7mpblCwqsLYYiT8FJ1El6nILy6EIY 4CS9Vp1x4ycJsYlKYeUGJmcyHhp888v40dpF6ONLmyGKxr7UNL 7W1c+TwyN+hXuB3yEmJ7FWaqkesekL1wXj3O6SLM04Y4dQXhjg jZ15e4TXn1mQJqxcpr/DdaspFxjn1hSFOwkvVSXhdgPASF4Y4CS9Vp1x4KcOEYkaYeUGJ ZRdwB1ptRggvKLHsAu5Aq80I4QUlVj0h/GDMzEtcGOIMm3k5JtecWyM381JeIeElLgxxEl6qTsLrAoSXuDD ESXipOuXCSxyGFNMRNvOilzrFsgu4CQ03HuuGg9OEF5RYdgE3o eEGY7ehB/tLeEGJVU9oPxi/Gk68yCCnvvCGs314MfPqXVi9SHyFhJey8IYzK7x8v+0acmtkhd WLxFdIeCkLbzgJrzbCCKdceInDnGIwsmZeNFK/WHYBN6HnBoPwgqtYdgE3oecGg/CCq1j1hPyD8esfs/d1MmLIcjLzaiOMcMrNvPRXSHjJCu85G/8hVcKrd2H1Iv0VEl6ywhBnQHi5PzPOuTVy4aUP04q5CJh50UJd Y9kF3IfOmwvCC0qsdkJ/X/UrfNFLneoQXk4Ms2qrndAfB/Qy89K/k10MVph5eTHMqm2x4/+t61o7pfM/iuR/T/4359YMs+pqwunH80KRqsIQZ71Xb/r4zssJuZ82dvFgTJET4R1e0+7LMAu37AIeMcw2wG8ILyix7AIe Qf9NBOEFJdbulWIGK+J/vSOCLgYr+jOviPCac2vkZl7uEF5e6DdfiJPwUnV2EF4PN3vy8F pLnqj0my/EWYbX85tJeHn1pHp4PX/LBaFZ1Y7PIrsoW4tNeP3+93NOMPkWDNCTduai16o016ZZ1Y4BG iUf1/Di/g/Qk/bziveSNNemWdVPOi07E8IrmO7uif28wiu8Jp95bVG7k93NvFzC q4tVNyuyy5nX+sH29PZLtbfc2+mYX7eL/LyNh1W5jA77fYc8M/4JCS9HZ78/Qfpx0Zk3pG9BN5wK4XUGrzp7fId4GP+EhJeX06UnRcNri+wjsW xhW7ooUhpmXt70fhPs/KWyS5Ut7M0AP9nJh/ByZYCetDMXuTw2xqFZ1ZaTEzH4ht8fUuXmL0P0pLV7pelnXl50 N1hxMroJXw3TxarnLHKWv9u4EF56whAn4aXqJLzuOwkvNWGIk/BSdY4fXnF096wOd/AOL+gdyy7AB9pxfAgvKLHsAnygHceH8IISq56QfzDeOmX/8HqEU18Y4nQKr3erdLHqOYt8OvPSX+FCeKkKQ5yEl6qT8HrkJL ykhCFOwkvVKRdefcEUY3y8wwt6x7IL8IGOHB/CC0rMVtt+k/b6sscj26ZUqIcjvkcW8/G8/jEcnXVx5PaRv0M7ir7xwF24c2r+y0QRTn1hiJOZl6ozS1i9SH+ FC+GlKgxxeoTX7tvz58Idc24N4fXUSXjpCEOchJeqUy68eoRZ7 Mh4hxf0jmUX4AmtOTKEF5RYdgGe0JojQ3hBiVVPyD8YfzqftyY jBl0nMy9Vp9zMS3+Fn07CS0QY4iS8VJ2El4OT8BIRhjgfh9euP bpY9ZxF8tNGGAvv8ILesewCnKFBh4XwghLLLsAZGnRYCC8oseo J+QfjQ+fDBmXEoOtk5qXqlJt56a/w0El4KQhDnISXqpPw8nESXgrCEOez8PpsjC5WPWeRM/60cWGuMTDe4QW9Y9kFOEOPDgvhBSWWXYAz9OiwEF5QYtUT8g/Gh05mXgrCECczL1Wn3MxLf4U155P8old0nYSXqpPwcnMSXunCE CfhpeqUC69+YboxJg/Ci5YYEssuwB86dUwILyix7AL8oVPHhPCCEquekH8wrjmZeaULQ 5ze4dXFqucsct6B/fIgv+gVXSfhpepMCy+rfZT2/wdN46O9D4+8f91dI/WR7p+3NLeeNhW6989i9z27f/15gA6XOpLV4X+HRoIZx4Dc7VWaYVQsu4AQ6NcBIbygxLILiIKW HQ3CC0qsekJ+qvfdea9lGxc5qjDE6R1eXax6ziJPCqsX6a/wu5PwShSGOAkvVSfh5ewkvBKFIU7CS9UpF169w6RjNG6FF20wM JZdQBR07WgQXlBi2QVEQdeOBuEFJVY9If9g/NN5o3EZMeg6vcOri1XPWeTsA/uF8MoThjgJL1Un4eXvJLyyhCFOwkvVKRdeA8C8YyiuhxcNMDaW XUAg9O5QEF5QYtkFBELvDgXhBSVWPSH/YPzTycwrSxji9A6vLlY9Z5EM7AmvNGGIk/BSdRJeIc6r+UWv6DoJL1WnXHiNAVOPcbgYXmz98Fh2AbHQweNA eEGJZRcQCx08DoQXlFj1hPyD8RknM68UYYjTO7y6WPWcRTKwXx bCK0kY4iS8VJ2EV4iT8EoRhjgJL1WnXHgNA7OPQbgSXmz6DFh2 AeHQx4NAeEGJmcyHhgcdefWxTj0cuXdksQv/1Tu81FbBEccjf4d2FH3jgbvwpPPSb8JZRQ4mDHF6f+fVxarnLP KksHqR/grPO8/nF72i6yS8VJ2EV6CT8GosDHESXqpOufAaCca3I3A6vNjuSbDsA lpAN48A4QUlll1AC+jmESC8oMSqJ+QfjM87mXk1FoY4vcOri1X PWSQD+wIauqUwxEl4qToJr1gnDd1SGOIkvFSdcuE1GMxBuudce LHR82DZBTSCnu4ewgtKLLuARtDT3UN4QYlVT8g/GF9yMgdpKQxxeodXF6ues0gG9gWEV0vhDedacmQ8JSS82jsJr1 gn4dVSeNX5uTsH+0V4qTrlwms8mIbI4hVebPFUWHYB7aCzO4Lw gp9YdgHtoLN74fbMiy2eCquekH8wvurk33hqJvx0rkd8/lfVaf3iH15z7nWEU27mpb/Cq07Cq5nwnvPHBhFeqk7Cq4WTz/JrI7zh/J07hJeqUy68hoSZiCYuP21kc2fDsgtoCv2tyamJGOEFJZZdQFP o744hvKDEqifkH4zvOb+3uEiRvQtDnN7h1cWq5yySgf0xhFcDY YiT8FJ1El6NnIRXA2GIk/BSdaaFl622vfT15cBH3i0uUg9Hfh6pDfJ310jVzJEGR/4OTQJj3V752qts64RYdgGtoct7hfCCEquekH8wvu380ug6RXYt DHF6h1cXq56zyJPC6kX6K7ztJLyihSFOwkvVSXi1cxJe0cIQJ+ Gl6pQLr4FhPtIl9fBiQ+fEsgtIgF7vEsILSiy7gATo9S4hvKDE qifkH4xvO5l5RQtDnN7h1cWq5yySgf03au0uVWS/whAn4aXqJLyaOgmvUGGIk/BSdcqF19gwJemPSnixldNi2QXkQMf3B+EFJZZdQA50fH8QXlBi 1RPyD8ZPnMy8QoUhTu/w6mLVcxbJwP4Hh02vVmSnwhAn4aXqJLxaOwmvOGGIk/BSdcqF1/AwK+mMo/BiE2fGsgtIg77vDMILSiy7gExo/Z4gvKDEqifkH4yfOz9bX7DIHoUhTu/w6mLVcxbJwP43hFeQMMRJeKk6Ca8EJ+EVJAxxfoTXw2fGLlY9Z 5H8tPE3TEx6wju8oHcsu4BkeAN0A+EFJZZdQDK8AbqB8IISs9p Haf9/0DQ+2vvwyPvX257ax8c7Hvm8pYl3rFmF7v2z2P7Iuq5SFWp2eK f9c+bI36EdRd944C50ce5+99YssjthiLPs1effdnWx6jmLPCms XqS/Qhcn4RUhDHESXqpOufCaBOYm3eAdXtA7ll1AMrwHuoHwghLLLi Af3gZ9QHhBiVVPyD8Yezl3P3B8Ltyhfye7WPU2vFySq4tVz1kk A/uzEF5drJrwknUSXmlOwquLVRNesk658JoHpid94B1e0DuWXYAE vBk6gPCCEssuQALeDB1AeEGJVU/IPxg7Ot9vBuUiOxKGOP8PL6/k6mLVcxbJwP4ChJevMMRJeKk6Ca9k5+stIV5kL8IQJ+Gl6pQLr 9lgjKKOd3hB71h2ASrwllCH8IISyy5ABd4S6pgtbBNssOoJ+Qd jXyczL3Wnd3h1seo5i2Rgf5nXPyvsKHyhfye7WDXhJeskvPKdh Je0k/BSdcqF14QwT5GGmReUWHYBQvDGkMaMDYItll2AELw3pCG8oMSq J+QfjN2dzLyknd7h1cWq5yySgf1lCC9pJ+Gl6iS8JJwRDyb6d7 KLrSG8ZJ1y4TUnTFVkYWtgh9lq25x7fTntkd2TY3o9HHkfeW2N Tj0cST/ydwgWfnsXhq2BHVY9If9gHOFk5iXrdN+aLlY9Z5EnhdWL9FcY4 bTV/w8T6d/JLrZGf18inHMWSXjdFOq/SfSF7s51XRfvEYf+qiOEEU658JoWZiuCRIQX9I5lF6AI+aUG4Q WfWHYBihBeahBe8IlVT8g/GEc4X0LxP8mtL3R3MvNSdsrNvPRXGOEkvASd/7aD8FJ1El4STsJL0El4iTvlwmtyGHvpEBRe0DuWXYAohJcOhBc cYtkFiEJ46UB4wSFWPSH/YBzhfAuVP6VGX+jo/NsIZl6qTrmZl/4KI5yEl5qT8PIVRjgJLwkn4aXmJLx8hRFOufCaHGZeIsSFF/SOZRegC/mlAOEFNSy7AF0Ir3SKLSC8oMSqJ+QfjCOcW6FXeOnfSdmtCQ0v 2VWHCiOccjMv/RVGOAkvKSfhNWeRhJeD0CW/9O+k7NYQXnMWyU8bHWDslcj+5jPzghLLLkAawisRwgu+Y9kFqE N+ZUF4wXesekL+wTjC+Sl8Hl76d1Jza6LDS3PV0cIIZ9rMy2of pf3/QdP4aO/DI+9f417r9SnzTzyft7TZ/Ums8Hn/7O78YnIVjtHhmv1z5sjfoR1F33jgLoxwfgr5zivFeXDb+c5L1Z kldH7V8WDmlUKD8ILesewCOoD8ag/hBT+x7AI6gPBqD+EFP7HqCfkH4wjnofBheOnfSbWtOb7hzLxUn XIzL/0VRjgJLwUn4RUnjHASXhJOwkvBSXjFCSOccuEFb5h5NaZNeEHv WHYBfUB+tYTwgjNYdgF9QHg1o3qrCS8oseoJ+QfjCGdN+CS89O +k1NY0Cy+pVTcTRjjlZl76K4xwEl7pTsIrVBjhJLwknF+Et/NL/05Kbc26rvy0MU4Y4ZQLL9jB2KsB6/8cnGPmBSWWXUA3EF4NeN1kwgvOYNkF9AT5Fcr7ey7CC85g1RPy D8YRzu/Ce+GlfydFtqZxeImsurEwwik389JfYYST8ApyrkfsLljaPjYO0 JAiTsJLwkl4ZTm/R9uyEF66Trnwgk+YeYXyvr3MvOAMll1AZ5BfcRBecAnLLqAzCK 84Gj82Qu9Y9YT8g3GE86fwRnjp30mFrfl9Y5l5qTrlZl76K4xw El5ZTsKrjTDCSXhJOAmvLCfh1UYY4ZQLL6jB2CuC9uEFvWMm86 HhvRzZfQx9ej0DHHnd0to1tUG+2io40vjI3yE4Cd95uXPqltKr UGLVE/IPxhHOM8Kr4aV/J9O3JiW80ledIoxwZgmrF+mvMMJ5Ungpv/TvZPrWEF7NhBFOwkvCSXi1d569mYSXqlMuvOALjL0cyQov6B3L LqBXyC8vCC+4h2UX0CuElxeEF9zDqifkH4wjnP6Tmh7uZOLWXP g9gJmXqlNu5qW/wggn4dXYSXg1FkY4CS8Jp/8P+LOLTBGedxJejYURTrnwgp8w9npOYnhB71h2AR1DeD3k2g0k vKDEsgvoGMLrIYQXPMGqJ+QfjCOczLxaOnPDa7yGzHLKzbz0Vx jhvCo88/ZLL7K98KST8GovjHASXhJOwquZ8/JDN+Gl6pQLLzgDY6/bpIcX9I5lF9A3hNdtCC94iGUX0D3k1z0IL3iIVU/IPxhHOG8If74JFYpsLPzpvJP4zLxUnXIzL/0VRjjvCb+/FUWKbCn86SS8soQRTsJLwkl4tXESXlnCCKdceMF5GHtd4ubtYu YFJZZdwAgQXpcgvMAFyy5gEMiv8xBe4IJVT8g/GEc4b3p3YSsAAAddSURBVAu/vCF1imwm/O4UCa+xG7KlU27mpb/CCCfhFe28/y0q4aXqTAsvW2176evL7cHdl1JH3r+m17N9T9ZuoMIda1ZhrX/Wdb1nXqxRhVJHdDq8cf+cOfJ3CJ7AzOskOt95Qe9YdgHjQH6dg fACLyy7gHEgvH7y6BYRXlBi1RPyU70I5xNh7Z0pVWQbYc0pFV7 DN2QzZ5awepH+CiOchFeok/BKF0Y4CS8J50Ph4ZtTrcgGwpqT8EoXRjjlwgtuwNjrC09vDjMv KLHsAkaD/KpBeIEvll3AaBBeNQgv8MWqJ+QfjCOcz4Wfb1HBIqOFn06HTGf mpeqUm3nprzDC6SLcvVE1iwwVfjoJLxFhhJPwknASXkFOwktEG OGUCy+4DWOvHT43hJkXlFh2AQNCeO0gvCACyy5gQAivHYQXRGD VE/IPxhFOL+Hun/dycXYk3DrdopyZl6pTbualv8IIJ+Hl7iS8pIQRTsJLwkl4uTsJ LylhhFMuvOAhTL5eyIYX9I5lFzAshNfiexMILyix7AJGhvwivC AOq56QfzCOcPoKX29d8SIjhG+ncnhN2JBBTrmZl/4KI5yEl6PT+RtPwkvVSXhJON2Fr48p9HXqCxfCS1UY4ZQLL3Bh 5rGXeHhB71h2AYMzbXj5L5zwghIzmQ8NH/LIe+wlUk+zI+/w8jIvJrEujugc+Tu0o+gbD9yFEU534bQzL/3vvOZsyAhnlrB6kf4KI5xdvI31Vx0R2YSXrJPwknASXi4QXrLC CKdceIEjs43tQ9bLwB5KLLuAKZgqvKIWS3hBiWUXMAvz5BfhBW 2w6gn5B+MIZ1yRjm9p8VUH/aUoZl6yTrmZl/4KI5yE10O2f7zLy/kPwkvVSXhJOEOL9Mov5VUTXuLCCKdceIE7w4+9YhfIzAtKLLuA iSC8HkF4QYllFzARhNcjCC8oseoJ+QfjCGd0kS5vb81V75bGzE tTGOGUm3nprzDCSXjdhvCKcM5ZJOElIfx0Ps8vzVUTXhHOOYvk p42iDDn5arEoZl5QYtkFzMh4+UV4QXssu4AZIbzuQHhBiVVPyD 8YRzibFfnk3a626sO1MPPSFEY45WZe+iuMcBJeNyC84pxzFkl4 SQhrzmHCq7YQwktTGOGUCy8IZZixV7uFMPOCEssuYF4GyK+mSy C8oMSyC5gXwusahBeUWPWE/INxhLNxkffe/CKr/l48My9NYYRTbualv8IIJ+F1HsKrgXPOIs+Gl9U+Svv/g6bx0d6HR96/itRzeOTzlm4Pbv/pUc0Ka0deH87YrH8Wc147He515F7/PD/ydwhS6HTylVA2vQolll0AdJlfhBekY9kFQH/hlVMw4QUlVj0hP9WLcKYUeTUL0ld9pmD/O8nAXtWZJaxepL/CCGdWkZfyK3fVJ0slvDSFEU7CS8JJeP2E8GrpnLPIp+EFjeli8 pVZJDMvKLHsAuAP/fwivEAHyy4A/hAPr+TyCC8oseoJ+QfjCGd6kSk/yDspzB3MMfOSdcrNvPRXGOFML1I2vNL/PAfhJeskvCSc6UUSXnWjszB9r1OEEU658IIsBCdfEiUx84ISyy 4ADpAIiw0t61k3FCcILyix7ALgGJ38apxc1XOEF5RY9YT8g3GE U6fIL2/jlqu+nVw3ivzxWsy8VJ1yMy/9FUY4pYps9qliCuH1+4UIL1Un4SXhlCoyPbxafrjk67WqA6+F8 NJ1yoUXpJM79vJ99fWIzwu+FcDMC0osuwD4RmJ+NX7pz5cjvOA 7ll0A/CAlv9q/KOEFV7HqCfkH4winZpG7t3H0ql2S6/nAPjq8NPc6WhjhlJt56a8wwilb5PadPGR4LR9zsQ/jZeF3ZPc6VBjhJLwknLJFNgsvrwdG/m6jpjDCKRdeoEaDOZTOH+s/gJkXlFh2AXCB0HCRTq6F8II9ll0AXCMoYtSTayG8YI/ZatsnzNeX24O7L6WOvH8VqefwyOctfWjezb+em9d1dV+7Y//UBvk6FcYdmbPDz+7gUmF7tQvuwghnL0Ue/zzuFq/kclFt8XcysFd1ZgmrF+mvMMLZV5HP8+tl6GLVhJesUy68oAue5 FcHc64tzLygxLILgKfceIR0fOpsB+EFJZZdAPhwMo+6jK0XhBe UWPWE/INxhLP3Ig9/Kvft79zEVBjiZOal6pSbeemvMMI5UpHfA+uG8BKEl6Ywwkl4ST jnLLKLVRNesk658ALQgpkXlFh2AQDnILygxLILADgH4QUlVj0h/2Ac4ZyzyC5WzcxL1ik389JfYYRzziK7WDXhJeskvCSccxbZxao JL1mnXHgBaMHMC0osuwCAcxBeUGLZBQCcg/CCEquekH8wjnDOWWQXq2bmJeuUm3nprzDCOWeRXaya8JJ1El4S zjmL7GLVhJesUy68ALRg5gUlll0AwDkILyix7AIAzkF4QYlVT8 g/GEc45yyyi1Uz85J1ys289FcY4ZyzyC5WTXjJOgkvCeecRXaxas JL1pkWXibzoeEc4ciXI4tp1cOR9CP/Ac2UCIyIaTcgAAAAAElFTkSuQmCC

hi ba
2014-01-21, 16:34
9riTou l momayaz deLTA wela mazzale :D ?!

non mazzzl

أحْمد أمير
2014-01-21, 16:38
هذا هو التمثيل البياني
http://im33.gulfup.com/YhPIO.bmp
للحل الحسابي يجب ان تكونو قد درستم حل معادلات من الدرجة 2 و انا لم أدرسها

hi ba
2014-01-21, 16:50
merci bcccp meme nous ma9rinache ta3 daraja 2