g-abdelhamid
2009-02-22, 11:58
الإحصاء التطبيقي
مدخل عام للإحصاء
الإحصاء الوصفي.
- جمع المعلومات.
- تحليل المعلومات
الإحصاء التطبيقي.
هو علم اتخاذ القرارات حتى وإن كانت المعطيات قليلة، يعتمد على أشياء كثيرة أهمها ثلاث:
1. المجتمع الإحصائي: هو كل وحدة تتوفر فيها الخصائص المدروسة وهذه الخصائص لا يمكن عدها وبهذا نقول أن المجتمع يمكن أن يكون محدد أو غير محدد (لا نستطيع إحصائها)، (قبل الدراسة يجب تحددي العينة).
2. الاحتمالات: عبارة عن تصورات حدسية مستقبلية مبنية على قدرات الباحث في تقدير الأحداث وحسب اندماجه (الباحث) في المجتمع، وهي تصورات منفصلة مستقبلية لأحداث لا تمثل احتمالات علمية مطلقة نسبية، يلجأ الباحث إليها، وبذلك توجد احتمالات متنوعة.
مفهوم الفرضيات: هي عبارة عن حل مؤقت لحل مشكلة دراسية من خلال إيجاد العلاقة بين متغير مستقل وآخر تابع، ويمكن الوصول إليها من خلال الملاحظات السابقة.
استعمالات الفرضيات: تستعمل في واقع الأمر للتوصل إلى اختيار بديل مناسب من أجل اتخاذ القرار المناسب.
3. العينة: هي مجموعة متغيرة نسبية من المجتمع العام ويشترط فيها ما يلي:
- أن تعكس كل صفات وخصائص المجتمع.
- أن يعطي لكل فرد من أفراد المجتمع الانتماء إليها قصد القضاء على التحيز.
- أن تكون كبيرة نسبيا.
الاحتمالات.
هي علم المصادفة يدخل في كثير من التخصصات.
التحليل التوفيقي.
تمهيد: نحتاج في الدراسات الاجتماعية إلى العينات لأنه يصعب دراسة المجتمع بأكمله والعينة هي المجموعة الجزئية من المجتمع الإحصائي، قد يكون الترتيب مهم أو غير مهم في العينة وفيما يخص التحليل التوفيقي نستعمل عدة طرق في دراسة العينة.
1. الترتيب: يرمز له بالرمز (A)
إذا أخذنا عينة فيها عناصر نركز للعناصر بـ: (n) ونسحب العينة من (K) بشرط أن يكون K < n.
الترتيب بدون إرجاع: يعني سحب عنصر دون إرجاعه، ه>ا يعطي الفرصة للفرد للظهور مرة واحدة.
لنفرض مجتمع إحصائي (I) ستكون من عناصر حيث:
I={A,B,C,D}
تشكيل العينات الفردية من (I) يكون :
I={A},{B},{C},{D}.
تشكيل العينات الثنائية من (I) يكون:
I={A{B,C,D},B{A,C,D},c{A,B,D},D{A,B,C}}
مثال: يتأهب (05) عدائين للسباق عند نهاية السباق:
- يفوز الأول بميدالية ذهبية.
- يفوز الثاني بميدالية فضية.
- يفوز الثالث بميدالية برونزية.
فكم قائمة يمكن أن نجهزها للفائزين؟
يتم اختيار المرتبة الأولى هي 5.
يتم اختيار المرتبة الثانية هي 4.
يتم اختيار المرتبة الثالثة هي 3.
وبالتالي عدد الطرق الكلية الممكنة هي جداء هذه الطرق:
3=60.×4×A=5
A=n(n-1).(n-2)……(n-k)
A=n(n-1).(n-2)……(n-k)
A!=n(n-1).(n-2)……(n-k)
ـــــــــــــ A=
(n-k)
بحيث أن: K= عدد مفردات العينة.
n= عدد أفراد المجتمع.
n!
ــــــAKn =
(n-k)!
الترتيب مع الإرجاع: إن السحب مع الإرجاع يسمح لنا بانتقاء المفردات أكثر من مرة ويرمز لها بالرمز (AR).
مثال: ما هي القدرة النظرية للشبكة الهاتفية الجزائرية، إذا كان رقم المناداة مكونا من ستة أرقام.
n=10، k=6.
AR610=106
2. التبادل: تعني الترتيب دون تكرار العنصر لـ: n المفردة وبالتالي يمكن إستعمال الصيغة الرياضية التالية:
n!
= n!=pn ــــــAnn =
(n-n)!
التبادل دون تكرار:
مثال: بكم طريقة مختلفة يمكن أن يجلس 5 أشخاص داخل السيارة.
ملاحظة: مع العلم أم كل واحد منهم يمكن أن يكون سائقا.
عدد الطرق هو 120 طريقة
120=1×2×3×4×Pn=p5!=5
التبادل مع التكرار:
مثال: ما هو عدد التبادل المختلفة التي يمكن تكوينها من جميع أحرف كلمة RECHEUCHE، لدينا 9 أحرف.
PR=n1,n2,n3……..
PR=n1,n2,n3……..
إذا لدينا R=2، H=2، E=3، C=2. ومنه:
9!
ـــــــ=
2!.2!.3!.2!
التباديل الدائرية: إن تبادل مفردات عينة في وضعية دائرية فإن عدد الطرق مختلفة: Pn=(n-1)
مثال: بكم طريقة يمكن لـ 5 إخوة أن يجلسوا حول طاولة مستديرة لتانول وجبة الغذاء.
بما أن شكل الطاولة هندسية فإنه يمكن لأخ واحد أن يختار في أي مكان يجلس والأربعة يختارون طرق عدة.
pn=(5-1)!4.3.2.1=24
3. التوافق:
التوافق بدون إرجاع: هي الطريقة لتنظيم مفردات المجتمع الإحصائي دون أخذه بعين الاعتبار.
n!
ـــــCkn=
K!(n-k)!
التوافق مع الإرجاع: إن عدد مفردات k من K مع إمكانية تكرار العنصر نفسه من n عنصر مختلف.
(n+k-1)!
ــــــCk(n+k-1)=
K!(n-k)!
مثال: ما هو عدد العينات المكونة من 3 طلاب التي يمكن سحبها مع الإعادة من مجموعة من الطلاب تحوي 6 طلبة.
8!
ــــــC3(6+3-1)=
15!
نموذج عن حالة تحصى ترتيب بعض المفردات ولا تحصى البعض الآخر:
مثال: لجنة مكونة من 20 طالب تختار مكتب لها مكونا من 5 أعضاء :
رئيس، نائب رئيس، 3 أمناء، (الترتيب مهم).
20!
رئيس ونائب رئيس ـــــA220=
(20-2)!
18
3أمناء ـــــC318=
(18-3)!
5أعضاء كلهم A220 . C318
نظرية الاحتمالات.
تمهيد: إن القسم الرياضي الذي يهتم بدراسات الظواهر العرضية، الفكرة الأساسية التي تقوم عليها نظرية الاحتمالات.
تعار يف ومفاهيم أساسية في نظرية الاحتمالات:
1. الاختبار: تعد التجربة من أهم مفاهيم نظرية الاحتمالات وهي تقوم على أساس التأكد أو التحقق من بعض الظروف الظاهرة ما قد تكون من صنع الإنسان أو بالمصادفة مثل: (تسجيل كمية الأمطار في منطقة ما)، وتتعلق بجملة من الشروط.
2. التجربة النظامية: هي كل تجربة يمكن أن نتوقع بنائها على أساس قواعد علمية معروفة فانطلاقا من جملة من الشروط.
3. التجربة العشوائية (الاحتمالية): هي التي لا يمكن أن نتوقع نتيجتها، هي تكرار نسبي لمنطقة ما لعدد من المرات وهذا العدد هو (K) مقسمة على عدد مرات التجربة.
k
ــA= حيث k ≤ 1 أصغر أو تساوي.
n
فراغ إمكانات التجربة: تسمى مجموعة من النتائج E في تجربة ما إمكانات التجربة بالرمز Ω
مثال: فراغ إمكانات زهرة النرد =1,2,3,4,5,6Ω
الحوادث وأنواعها.
الحادث: في أي تجربة إحصائية يمكن أن نركز على نتيجة محددة من النتائج الممكنة فهذه مجموعة حدث ونرمز لها بالرمز ُُE.
أنواعه:
1. الحادث البسيط: هو الحادث الذي لا نستطيع أن نجزئه.
2. الحادث المركب: هو الحادث الذي نستطيع أن نجزئه إلى حوادث بسيطة.
3. الحادث الأكيد: احتمال وقوعه الأكيد ( بعد النهار يأتي الظلام).
4. الحادث المستحيل: استحالة حدوثه ( تصبح الجزائر غدا إمبراطورية).
5. الحادث المتمم (المعاكس): إذا أخذنا مجموعة الحوادث من الأرقام الفردية (1،3،5) ونرمز له بـ: (A) ومجموعة الأعداد الزوجية (2،4،6) ونرمز له بالرمز (À) إتحادهما يساوي مجموعة خالية:
{ }=À AΠ
6. الحوادث المتنافية والغير متنافية: هي تلك الحوادث التي لا يمكن وقوعها في آن واحد.
7. الحوادث الملائمة والممكنة: عند قيامنا بتجربة ما بلاشك فإننا نريد حدوث حادث ما ويسمى هذا الحادث (الملائم) ولكن قد لا يحدث ما نريد الوصول إليه وهو الحادث المتمم لما نريده تسمى بالحوادث الممكنة.
معنى الاحتمال.
يقاس الاحتمال بنهاية صغرى وهي الصفر وهي تعكس حالة الحادث الذي هو مستحيل،
كما تعكس النهاية الكبرى وهي واحد وهي تعكس الحقيقة المطلقة إذا تقاس الاحتمالات في المجال [0،1].
المدخل التقليدي لتعريف الاحتمال.
نتائج الاحتمالات في المدخل التقليدي يمكن أن نعرفها دون اختبارها، وهو يعتمد على التجارب المتجانسة واللامتناهية إذا رمزنا للحادث الملائم A ولاحتمال تحقق هذا الحادث P(A) وكان عدد الحالات التي يقع فيها الحادث A الملائم هو r وكانت n هي عدد الحالات الممكنة إذا فإن احتمال تحقق الحادث هو:
r
ــ= P(A) حيث r ≤ n 1 ≤
N
مثال1: ما احتمال ظهور عدد فردي عند إلقاء زهرة النرد مرة واحدة.
- نستخرج عدد الحالات الممكنة: |Ω|=6
- عدد الحالات الملائمة: ّ|A|=3
ومنه:
1 3
ـ=ـ PA=
2 6
مثال2: علبة تحوي عشرة أفلام منها 7 جيدة الصنع ، ما احتمال حصولنا على 4 أفلام جيدة إذا قمنا بسحب 6 أفلام.
- نستخرج عدد الحالات الممكنة:
10!
=210 ـــــC610=
6!(10-6)!
عدد الحالات الملائمة: C47 . C23=105
ومنه:
1 105
ـ=ـــ PA=
2 210
خواص الاحتمال التقليدي.
1- احتمال قيمة عددية موجبة دائما P(A) ≥ 0 مهما كان الحادث (A).
2- عندما يكون الحادث (A) أكيدا فإن احتمال تحققه يساوي الواحد وفق الصيغة التالية:
|A|
ـــــP(A)=
|Ω|
3- عندما يكون الحادث (A) مستحيلا فإن احتمال تحققه هو الصفر و>لك وفق الصيغة التالية:
0
=0ــ P(Ø)=
|Ω|
4- من 1 و 2 نستنتج أن 0 ≤ P(A) ≤ 1
5- إن الحادث المتمم لـ: (A) هو (À) ويرمز لاحتمال تحققه بـ P(À) وبما أن AUÀ=Ω تشكل هذه العلاقة حادثا أكيدا والحادثان متنافيان إذا:
P(A)+P(À)=P(AUÀ)=(Ω)=1
ومنه نستخلص: P(À)=1-P(A)
ملاحظة: ما يعاب على هذا المدخل أنه يصعب اعتماده عندما يكون عدد الحالات الممكنة منتهيا، (أي أن في المدخل التقليدي عدد الحالات الممكنة مستمر).
المدخل الإحصائي في تعريف الاحتمال.
كثيرا من الظواهر لا يمكن معرفة احتمال تحقيقها مسبقا لذا لبد من إجراء المحاولات وتسجيل المشاهدات على التجربة موضوع الدراسة، ومن ثمة استنتاج الاحتمال وعلى هذا الأساس يعرف الاحتمال على أنه التكرار النسبي لوقوع حادث معين ونكتبه بالصيغة التالية:
عدد مرات تحقق الحادث
التردد النسبي للحادث A=ـــــــــــــــ
عدد التجارب
r
ــــF(A)= حيث 0 ≤ F(A) ≤ 1
n
مثال: تم إلقاء زهرة النرد 1000 مرة وإحصاء المرات التي يظهر فيها وجه معين وكان 200 مرة.
200
ــــF(A)=
1000
ملاحظة: إن المدخل الإحصائي للاحتمال هو مدخل وصفي كثر أكثر منه رياضي، وذلك للدور الذي تلعب جملة من العوامل العشوائية، وفيه نحصل على نتائج مقبولة.
القوانين الأساسية في حساب الاحتمالات.
جمع الاحتمالات:
مثال: صندوق يحوي 5 كرات 2 بيضاء و1 سوداء و2 حمراوين.
سحب واحدة، ما احتمال الحصول على كرة بيضاء أو سوداء.
احتمال الحصول على كرة بيضاء:
2
=0.4ــP(B)=
5
احتمال الحصول على كرة سوداء:
1
=0.2ــP(N)=
5
احتمال الحصول على أحدهما هو:
P(B)U(N)=P(B)+P(N)
=0.4+0.2=0.6
خلاصة: احتمال تحقق جمع الحوادث المتنافيا يساوي مجموع احتمالات تلك الحوادث.
الحوادث غير المتناهية.
إذا كان AوB حدثين غير متناهيان فإن احتمال وقوع أحدهما هو عبارة عن حاصل جمع احتمال وقوع كل منهما مع إبعاد احتمال وقعهما معا:
P(AUB)=P(A)+P(B)-P(AΠB)
وتعرف هذه الصيغة بالقانون العام للجمع.
مثال: يقوم شخص بإلقاء قطعة النرد، المطلوب ما احتمال الحصول على رقم فردي أو يقبل القسمة على ثلاث.
ليكن A عدد الحالات التي تمثل العدد الفردي: A={1.3.5}
ليكن B عدد الحالات التي تمثل العدد يقبل القسمة على 3: B{3.6}
3
ــP(A)=
6
2
ــP(B)=
6
1
ــP(AΠB)=
6
P(AUB)=P(A)+P(B)-P(AΠB)
=3/6-2/6=1/6
=3/6+2/6-1/6=4/6=0.6
ضرب الاحتمالات.
ليكن لدينا حدثان مستقلان عن بعضهما البعض.
- ما احتمال وقوعهما معا في آن واحد.
هو حاصل ضرب احتمال حدوث الأول في احتمال حدوث الثاني.
وتسمى أيضا بقاعدة الاحتمالات المركبة (ح) مستقل.
مثال: صندوق يحوي 10 كرات بيضاء و20 سوداء نسحب كرة منه بيضاء وبدون تكرار. ونسحب مرة أخرى كرة ثانية.
أحسب احتمال أن تكون كل من الكرتين بيضاء.
P(AΠB)=P(A).P(B)
=10/30.9/29
الاحتمال الشرطي.
نستخدم نظرية الاحتمال الرمز P(A/B) ويقرأ بتحقيق الحادث A شرط تحقق الحادث B مسبقا ومنه نكتب:
إذا كان A وB حدثين مستقلين فإن:
P(A/B)=P(A) أو P(B/A)=P(B)
أما إذا كان الحادثين غير مستقلين
P'(A/B)≠P(A)' أو P(B/A)≠P(b)
الحوادث الغير مستقلة.
إذا كان لدينا الحدثان A وB وكان وقوع الحادث B مشروط بوقوع الحادث A فإن احتمال وقوعها معا هو:
جداء احتمال وقوع الأول باحتمال وقوع الثاني بعد حدوث الأول.
ويعبر عن ذلك وفق التالي:
P(AΠB)=P(A).P(B/A)
أو
P(AΠB)=P(B).P(A/B)
إذا كان P(B)≠0 فإن الاحتمال الشرطي لوقوع الحادث A بعد وقوع الحادث B.
يعطي بالعلاقة التالية:
P(AΠB)
ــــP(A/B)=
P(B)
خواص الاحتمال الشرطي.
• P(Ω/A)=1
إثبات:
P(ΩΠA)
ــــP(Ω/A)=
P(A)
P(A)
=1ــــ=
P(A)
• إذا كان B وA حدثان متنافيان فإن: AΠB=Ø
إثبات:
P(AUB/C)=P(A/C)+P(B/C)
الاحتمال الكلي.
في حالات كثيرة قد يكون وقوع حادث ما مرتبط بالتجربة E ولا يتحقق بتحقق الحوادث المتنافية:
B1.B2.B3……….Bn
والتي تشكل تجزئة للمجموعة الكلية.
المتغيرات العشوائية.
كثيرا ما نتعامل مع ظواهر مختلفة تماما مثل سقوط الأمطار على شرق البلاد مع احتمال سقوط الثلوج .... الخ.
المتغير العشوائي.
إن المتغير العشوائي X هو مجموعة مقادير أو قيم لنتائج تجربة عشوائية يكون تحققها مقرون باحتمالات معينة.
إن X كمتغير عشوائي يأخذ قيمة ممكنة X1.X2.X3………Xn
وكل قيمة ممكنة تقابلها قيمة احتمالية من P1.P2.P3………Pn
نظرية العينات.
في دراسة موضوع ما يقوم الباحث بأحد الطريقتين:
1. طريقة الحصر الشامل، ويعني القيام بالدراسة على المجتمع الإحصائي ككل.
2. أو يأخذ عينة من مجتمع الدراسة.
اختيار أحد الخيارين يكون حسب الهدف من الدراسة.
تعريف العينة.
هي أخذ جزء من المجتمع يمثل الكل، من أجل دراسته.
هي طريقة اختبار العينة تسمى بطريقة المعاينة وهذه الطريقة لا تكون عشوائية فالمعاينة هي علم وفن تساعد الباحث على وضع معلوماته بمستوى الدقة المطلوبة.
مميزات العينة.
- تختصر لنا الوقت أو توفر الوقت والتكاليف والجهد.
- يمكن الحصول على إجابات دقيقة وكاملة.
- إمكانية الاستبدال المفردات إذا امتنعت عن الإجابة، بنفس الطرق التي اخترنا بها العينة السابقة.
استنتاج.
يطلق على المجموعة التي بصدد دراستها بجمهور البحث وهذا المصطلح هو تعبير إحصائي وليس مرادف لكلمة الناس فقد يكون جمهور البحث مجموعة من الطلاب ... الخ.
أهمية العينة في العلوم الاجتماعية.
نظرا لصعوبة اختيار الباحث للحصر الشامل فهو يلجئ للعينة، فهي تعطي الدقة اللازمة والمصداقية المطلوبة أكثر من أسلوب الحصر الشامل.
أسلوب المعاينة.
تقدير حجم العينة: لا يوجد اتفاق علمي حول حجم العينة حيث توجد اتجاهين:
1. هذا الأسلوب يعطي تقديرات بـ 10% إلى 15% .
2. هذا الاتجاه يعتمد على نظرية الاحتمالات وهي تلزمنا بمعرفة كل معطيات مجتمع البحث.
سحب العينة من المجتمع الأصلي:
1. في حالة مجتمع صغير: في هذه الحالة فإن الإشكال يتمثل في مدى توافر عدد كافي للقيام بالبحث.
2. في حالة مجتمع كبير: في هذه الحالة لبد للباحث اختيار العينة وذلك بأحد الأسلوبين:
أ- الاختيار الغير عشوائي: حيث يتم اختيار العينة التي يرى الباحث أنها تمثل المجتمع بنسبة لصفة أو خاصية ما.
ب- الاختيار العشوائي: يوجد طريقتين للاختيار العشوائي:
a) طريقة القرعة.
b) طريقة الجداول العشوائية.
أنواع العينات:.
تنقسم العينات إلى نوعين احتمالية أو غير احتمالية:
العينات الاحتمالية:
1. العينات العشوائية البسيطة: يستخدم فيها جميع مفردات المجتمع الإحصائي متجانسة، ويكون الهدف من البحث هو تحديد خصائص المجتمع، وتعطى نفس الفرصة لجميع مفردات المجتمع للظهور.
2. العينة العشوائية المنتظمة: هي في الواقع عينة بسيطة ولكن تتطلب تنظيم المفردات أو ترتيبها وعند ذلك تنتفي العشوائية.
مثال: ليدنا مجتمع يتكون من 6000 مفردة والعينة المطلوبة 200 مفردة والخطوات وفق العينة العشوائية تكون كالتالي:
عدد مفردات المجتمع الأصلي
مقدار التمثيل = ــــــــــــــــ
عدد مفردات العينة
ومنه: مقدار التمثيل= 600/300=30.
لنفترض أننا قمنا باختيار الرقم 22 كرقم عشوائي ومنه نجد
22.52.82.112. إلى أن نصل إلى 5992.
كيفية إيجاد أي مفردة من مفردات العينة:
رقم المفردة بالعينة = الرقم العشوائي المختار + ترتيب المفردة -1 على مقدار التمثيل.
يمتاز هذا النوع من العينات بالسهولة والسرعة في التطبيق.
3. العينة العشوائية الطبقية: تستخدم في دراسة المجتمعات التي تتميز بتباين نوعيات مفردتها، وقبل الاختيار يتم تقسيم المجتمع إلى طبقات ولكل طبقة خصائص معينة، ويتم التعامل مع كل طبقة وكأنه مجتمع مستقل ثم نأخذ عينة عشوائية من الطبقة.
طريقة اختيار العينة الطبقية:
- يقسم المجتمع الأصلي إلى مجموعات متجانسة إلى طبقات.
- تحديد نسبة مفردات كل طبقة في المجتمع الإحصائي النسبة تأخذ كتالي:
حجم الطبقة
نسبة مفردات كل طبقة= ــــــــــــــــ
حجم المجتمع الأصلي
ومن أجل تحديد مفردات العينات المطلوبة من كل طبقة نستخدم ثلاث طرق:
أ- طريقة التوزيع المتساوي: حيث يوزع (حجم العينة الكلي) على مختلف الطبقات بالتساوي دون النظر إلى حجم الطبقات ويحسب وفق التالي:
الحجم الكلي للعينة
حجم كل عينة = ــــــــــــــــ
عدد الطبقات
ب- طريقة التوزيع المتناسب: حيث يوزع حجم العينة الكلي، بحيث يتناسب مع حجم العينة الذي يخصص لكل طبقة معينة، وتحسب وفق الصيغة التالية:
الحجم الكلي للعينة×حجم الطبقة
حجم العينة من طبقة معينة = ــــــــــــــــ
حجم المجتمع الأصلي
مدخل عام للإحصاء
الإحصاء الوصفي.
- جمع المعلومات.
- تحليل المعلومات
الإحصاء التطبيقي.
هو علم اتخاذ القرارات حتى وإن كانت المعطيات قليلة، يعتمد على أشياء كثيرة أهمها ثلاث:
1. المجتمع الإحصائي: هو كل وحدة تتوفر فيها الخصائص المدروسة وهذه الخصائص لا يمكن عدها وبهذا نقول أن المجتمع يمكن أن يكون محدد أو غير محدد (لا نستطيع إحصائها)، (قبل الدراسة يجب تحددي العينة).
2. الاحتمالات: عبارة عن تصورات حدسية مستقبلية مبنية على قدرات الباحث في تقدير الأحداث وحسب اندماجه (الباحث) في المجتمع، وهي تصورات منفصلة مستقبلية لأحداث لا تمثل احتمالات علمية مطلقة نسبية، يلجأ الباحث إليها، وبذلك توجد احتمالات متنوعة.
مفهوم الفرضيات: هي عبارة عن حل مؤقت لحل مشكلة دراسية من خلال إيجاد العلاقة بين متغير مستقل وآخر تابع، ويمكن الوصول إليها من خلال الملاحظات السابقة.
استعمالات الفرضيات: تستعمل في واقع الأمر للتوصل إلى اختيار بديل مناسب من أجل اتخاذ القرار المناسب.
3. العينة: هي مجموعة متغيرة نسبية من المجتمع العام ويشترط فيها ما يلي:
- أن تعكس كل صفات وخصائص المجتمع.
- أن يعطي لكل فرد من أفراد المجتمع الانتماء إليها قصد القضاء على التحيز.
- أن تكون كبيرة نسبيا.
الاحتمالات.
هي علم المصادفة يدخل في كثير من التخصصات.
التحليل التوفيقي.
تمهيد: نحتاج في الدراسات الاجتماعية إلى العينات لأنه يصعب دراسة المجتمع بأكمله والعينة هي المجموعة الجزئية من المجتمع الإحصائي، قد يكون الترتيب مهم أو غير مهم في العينة وفيما يخص التحليل التوفيقي نستعمل عدة طرق في دراسة العينة.
1. الترتيب: يرمز له بالرمز (A)
إذا أخذنا عينة فيها عناصر نركز للعناصر بـ: (n) ونسحب العينة من (K) بشرط أن يكون K < n.
الترتيب بدون إرجاع: يعني سحب عنصر دون إرجاعه، ه>ا يعطي الفرصة للفرد للظهور مرة واحدة.
لنفرض مجتمع إحصائي (I) ستكون من عناصر حيث:
I={A,B,C,D}
تشكيل العينات الفردية من (I) يكون :
I={A},{B},{C},{D}.
تشكيل العينات الثنائية من (I) يكون:
I={A{B,C,D},B{A,C,D},c{A,B,D},D{A,B,C}}
مثال: يتأهب (05) عدائين للسباق عند نهاية السباق:
- يفوز الأول بميدالية ذهبية.
- يفوز الثاني بميدالية فضية.
- يفوز الثالث بميدالية برونزية.
فكم قائمة يمكن أن نجهزها للفائزين؟
يتم اختيار المرتبة الأولى هي 5.
يتم اختيار المرتبة الثانية هي 4.
يتم اختيار المرتبة الثالثة هي 3.
وبالتالي عدد الطرق الكلية الممكنة هي جداء هذه الطرق:
3=60.×4×A=5
A=n(n-1).(n-2)……(n-k)
A=n(n-1).(n-2)……(n-k)
A!=n(n-1).(n-2)……(n-k)
ـــــــــــــ A=
(n-k)
بحيث أن: K= عدد مفردات العينة.
n= عدد أفراد المجتمع.
n!
ــــــAKn =
(n-k)!
الترتيب مع الإرجاع: إن السحب مع الإرجاع يسمح لنا بانتقاء المفردات أكثر من مرة ويرمز لها بالرمز (AR).
مثال: ما هي القدرة النظرية للشبكة الهاتفية الجزائرية، إذا كان رقم المناداة مكونا من ستة أرقام.
n=10، k=6.
AR610=106
2. التبادل: تعني الترتيب دون تكرار العنصر لـ: n المفردة وبالتالي يمكن إستعمال الصيغة الرياضية التالية:
n!
= n!=pn ــــــAnn =
(n-n)!
التبادل دون تكرار:
مثال: بكم طريقة مختلفة يمكن أن يجلس 5 أشخاص داخل السيارة.
ملاحظة: مع العلم أم كل واحد منهم يمكن أن يكون سائقا.
عدد الطرق هو 120 طريقة
120=1×2×3×4×Pn=p5!=5
التبادل مع التكرار:
مثال: ما هو عدد التبادل المختلفة التي يمكن تكوينها من جميع أحرف كلمة RECHEUCHE، لدينا 9 أحرف.
PR=n1,n2,n3……..
PR=n1,n2,n3……..
إذا لدينا R=2، H=2، E=3، C=2. ومنه:
9!
ـــــــ=
2!.2!.3!.2!
التباديل الدائرية: إن تبادل مفردات عينة في وضعية دائرية فإن عدد الطرق مختلفة: Pn=(n-1)
مثال: بكم طريقة يمكن لـ 5 إخوة أن يجلسوا حول طاولة مستديرة لتانول وجبة الغذاء.
بما أن شكل الطاولة هندسية فإنه يمكن لأخ واحد أن يختار في أي مكان يجلس والأربعة يختارون طرق عدة.
pn=(5-1)!4.3.2.1=24
3. التوافق:
التوافق بدون إرجاع: هي الطريقة لتنظيم مفردات المجتمع الإحصائي دون أخذه بعين الاعتبار.
n!
ـــــCkn=
K!(n-k)!
التوافق مع الإرجاع: إن عدد مفردات k من K مع إمكانية تكرار العنصر نفسه من n عنصر مختلف.
(n+k-1)!
ــــــCk(n+k-1)=
K!(n-k)!
مثال: ما هو عدد العينات المكونة من 3 طلاب التي يمكن سحبها مع الإعادة من مجموعة من الطلاب تحوي 6 طلبة.
8!
ــــــC3(6+3-1)=
15!
نموذج عن حالة تحصى ترتيب بعض المفردات ولا تحصى البعض الآخر:
مثال: لجنة مكونة من 20 طالب تختار مكتب لها مكونا من 5 أعضاء :
رئيس، نائب رئيس، 3 أمناء، (الترتيب مهم).
20!
رئيس ونائب رئيس ـــــA220=
(20-2)!
18
3أمناء ـــــC318=
(18-3)!
5أعضاء كلهم A220 . C318
نظرية الاحتمالات.
تمهيد: إن القسم الرياضي الذي يهتم بدراسات الظواهر العرضية، الفكرة الأساسية التي تقوم عليها نظرية الاحتمالات.
تعار يف ومفاهيم أساسية في نظرية الاحتمالات:
1. الاختبار: تعد التجربة من أهم مفاهيم نظرية الاحتمالات وهي تقوم على أساس التأكد أو التحقق من بعض الظروف الظاهرة ما قد تكون من صنع الإنسان أو بالمصادفة مثل: (تسجيل كمية الأمطار في منطقة ما)، وتتعلق بجملة من الشروط.
2. التجربة النظامية: هي كل تجربة يمكن أن نتوقع بنائها على أساس قواعد علمية معروفة فانطلاقا من جملة من الشروط.
3. التجربة العشوائية (الاحتمالية): هي التي لا يمكن أن نتوقع نتيجتها، هي تكرار نسبي لمنطقة ما لعدد من المرات وهذا العدد هو (K) مقسمة على عدد مرات التجربة.
k
ــA= حيث k ≤ 1 أصغر أو تساوي.
n
فراغ إمكانات التجربة: تسمى مجموعة من النتائج E في تجربة ما إمكانات التجربة بالرمز Ω
مثال: فراغ إمكانات زهرة النرد =1,2,3,4,5,6Ω
الحوادث وأنواعها.
الحادث: في أي تجربة إحصائية يمكن أن نركز على نتيجة محددة من النتائج الممكنة فهذه مجموعة حدث ونرمز لها بالرمز ُُE.
أنواعه:
1. الحادث البسيط: هو الحادث الذي لا نستطيع أن نجزئه.
2. الحادث المركب: هو الحادث الذي نستطيع أن نجزئه إلى حوادث بسيطة.
3. الحادث الأكيد: احتمال وقوعه الأكيد ( بعد النهار يأتي الظلام).
4. الحادث المستحيل: استحالة حدوثه ( تصبح الجزائر غدا إمبراطورية).
5. الحادث المتمم (المعاكس): إذا أخذنا مجموعة الحوادث من الأرقام الفردية (1،3،5) ونرمز له بـ: (A) ومجموعة الأعداد الزوجية (2،4،6) ونرمز له بالرمز (À) إتحادهما يساوي مجموعة خالية:
{ }=À AΠ
6. الحوادث المتنافية والغير متنافية: هي تلك الحوادث التي لا يمكن وقوعها في آن واحد.
7. الحوادث الملائمة والممكنة: عند قيامنا بتجربة ما بلاشك فإننا نريد حدوث حادث ما ويسمى هذا الحادث (الملائم) ولكن قد لا يحدث ما نريد الوصول إليه وهو الحادث المتمم لما نريده تسمى بالحوادث الممكنة.
معنى الاحتمال.
يقاس الاحتمال بنهاية صغرى وهي الصفر وهي تعكس حالة الحادث الذي هو مستحيل،
كما تعكس النهاية الكبرى وهي واحد وهي تعكس الحقيقة المطلقة إذا تقاس الاحتمالات في المجال [0،1].
المدخل التقليدي لتعريف الاحتمال.
نتائج الاحتمالات في المدخل التقليدي يمكن أن نعرفها دون اختبارها، وهو يعتمد على التجارب المتجانسة واللامتناهية إذا رمزنا للحادث الملائم A ولاحتمال تحقق هذا الحادث P(A) وكان عدد الحالات التي يقع فيها الحادث A الملائم هو r وكانت n هي عدد الحالات الممكنة إذا فإن احتمال تحقق الحادث هو:
r
ــ= P(A) حيث r ≤ n 1 ≤
N
مثال1: ما احتمال ظهور عدد فردي عند إلقاء زهرة النرد مرة واحدة.
- نستخرج عدد الحالات الممكنة: |Ω|=6
- عدد الحالات الملائمة: ّ|A|=3
ومنه:
1 3
ـ=ـ PA=
2 6
مثال2: علبة تحوي عشرة أفلام منها 7 جيدة الصنع ، ما احتمال حصولنا على 4 أفلام جيدة إذا قمنا بسحب 6 أفلام.
- نستخرج عدد الحالات الممكنة:
10!
=210 ـــــC610=
6!(10-6)!
عدد الحالات الملائمة: C47 . C23=105
ومنه:
1 105
ـ=ـــ PA=
2 210
خواص الاحتمال التقليدي.
1- احتمال قيمة عددية موجبة دائما P(A) ≥ 0 مهما كان الحادث (A).
2- عندما يكون الحادث (A) أكيدا فإن احتمال تحققه يساوي الواحد وفق الصيغة التالية:
|A|
ـــــP(A)=
|Ω|
3- عندما يكون الحادث (A) مستحيلا فإن احتمال تحققه هو الصفر و>لك وفق الصيغة التالية:
0
=0ــ P(Ø)=
|Ω|
4- من 1 و 2 نستنتج أن 0 ≤ P(A) ≤ 1
5- إن الحادث المتمم لـ: (A) هو (À) ويرمز لاحتمال تحققه بـ P(À) وبما أن AUÀ=Ω تشكل هذه العلاقة حادثا أكيدا والحادثان متنافيان إذا:
P(A)+P(À)=P(AUÀ)=(Ω)=1
ومنه نستخلص: P(À)=1-P(A)
ملاحظة: ما يعاب على هذا المدخل أنه يصعب اعتماده عندما يكون عدد الحالات الممكنة منتهيا، (أي أن في المدخل التقليدي عدد الحالات الممكنة مستمر).
المدخل الإحصائي في تعريف الاحتمال.
كثيرا من الظواهر لا يمكن معرفة احتمال تحقيقها مسبقا لذا لبد من إجراء المحاولات وتسجيل المشاهدات على التجربة موضوع الدراسة، ومن ثمة استنتاج الاحتمال وعلى هذا الأساس يعرف الاحتمال على أنه التكرار النسبي لوقوع حادث معين ونكتبه بالصيغة التالية:
عدد مرات تحقق الحادث
التردد النسبي للحادث A=ـــــــــــــــ
عدد التجارب
r
ــــF(A)= حيث 0 ≤ F(A) ≤ 1
n
مثال: تم إلقاء زهرة النرد 1000 مرة وإحصاء المرات التي يظهر فيها وجه معين وكان 200 مرة.
200
ــــF(A)=
1000
ملاحظة: إن المدخل الإحصائي للاحتمال هو مدخل وصفي كثر أكثر منه رياضي، وذلك للدور الذي تلعب جملة من العوامل العشوائية، وفيه نحصل على نتائج مقبولة.
القوانين الأساسية في حساب الاحتمالات.
جمع الاحتمالات:
مثال: صندوق يحوي 5 كرات 2 بيضاء و1 سوداء و2 حمراوين.
سحب واحدة، ما احتمال الحصول على كرة بيضاء أو سوداء.
احتمال الحصول على كرة بيضاء:
2
=0.4ــP(B)=
5
احتمال الحصول على كرة سوداء:
1
=0.2ــP(N)=
5
احتمال الحصول على أحدهما هو:
P(B)U(N)=P(B)+P(N)
=0.4+0.2=0.6
خلاصة: احتمال تحقق جمع الحوادث المتنافيا يساوي مجموع احتمالات تلك الحوادث.
الحوادث غير المتناهية.
إذا كان AوB حدثين غير متناهيان فإن احتمال وقوع أحدهما هو عبارة عن حاصل جمع احتمال وقوع كل منهما مع إبعاد احتمال وقعهما معا:
P(AUB)=P(A)+P(B)-P(AΠB)
وتعرف هذه الصيغة بالقانون العام للجمع.
مثال: يقوم شخص بإلقاء قطعة النرد، المطلوب ما احتمال الحصول على رقم فردي أو يقبل القسمة على ثلاث.
ليكن A عدد الحالات التي تمثل العدد الفردي: A={1.3.5}
ليكن B عدد الحالات التي تمثل العدد يقبل القسمة على 3: B{3.6}
3
ــP(A)=
6
2
ــP(B)=
6
1
ــP(AΠB)=
6
P(AUB)=P(A)+P(B)-P(AΠB)
=3/6-2/6=1/6
=3/6+2/6-1/6=4/6=0.6
ضرب الاحتمالات.
ليكن لدينا حدثان مستقلان عن بعضهما البعض.
- ما احتمال وقوعهما معا في آن واحد.
هو حاصل ضرب احتمال حدوث الأول في احتمال حدوث الثاني.
وتسمى أيضا بقاعدة الاحتمالات المركبة (ح) مستقل.
مثال: صندوق يحوي 10 كرات بيضاء و20 سوداء نسحب كرة منه بيضاء وبدون تكرار. ونسحب مرة أخرى كرة ثانية.
أحسب احتمال أن تكون كل من الكرتين بيضاء.
P(AΠB)=P(A).P(B)
=10/30.9/29
الاحتمال الشرطي.
نستخدم نظرية الاحتمال الرمز P(A/B) ويقرأ بتحقيق الحادث A شرط تحقق الحادث B مسبقا ومنه نكتب:
إذا كان A وB حدثين مستقلين فإن:
P(A/B)=P(A) أو P(B/A)=P(B)
أما إذا كان الحادثين غير مستقلين
P'(A/B)≠P(A)' أو P(B/A)≠P(b)
الحوادث الغير مستقلة.
إذا كان لدينا الحدثان A وB وكان وقوع الحادث B مشروط بوقوع الحادث A فإن احتمال وقوعها معا هو:
جداء احتمال وقوع الأول باحتمال وقوع الثاني بعد حدوث الأول.
ويعبر عن ذلك وفق التالي:
P(AΠB)=P(A).P(B/A)
أو
P(AΠB)=P(B).P(A/B)
إذا كان P(B)≠0 فإن الاحتمال الشرطي لوقوع الحادث A بعد وقوع الحادث B.
يعطي بالعلاقة التالية:
P(AΠB)
ــــP(A/B)=
P(B)
خواص الاحتمال الشرطي.
• P(Ω/A)=1
إثبات:
P(ΩΠA)
ــــP(Ω/A)=
P(A)
P(A)
=1ــــ=
P(A)
• إذا كان B وA حدثان متنافيان فإن: AΠB=Ø
إثبات:
P(AUB/C)=P(A/C)+P(B/C)
الاحتمال الكلي.
في حالات كثيرة قد يكون وقوع حادث ما مرتبط بالتجربة E ولا يتحقق بتحقق الحوادث المتنافية:
B1.B2.B3……….Bn
والتي تشكل تجزئة للمجموعة الكلية.
المتغيرات العشوائية.
كثيرا ما نتعامل مع ظواهر مختلفة تماما مثل سقوط الأمطار على شرق البلاد مع احتمال سقوط الثلوج .... الخ.
المتغير العشوائي.
إن المتغير العشوائي X هو مجموعة مقادير أو قيم لنتائج تجربة عشوائية يكون تحققها مقرون باحتمالات معينة.
إن X كمتغير عشوائي يأخذ قيمة ممكنة X1.X2.X3………Xn
وكل قيمة ممكنة تقابلها قيمة احتمالية من P1.P2.P3………Pn
نظرية العينات.
في دراسة موضوع ما يقوم الباحث بأحد الطريقتين:
1. طريقة الحصر الشامل، ويعني القيام بالدراسة على المجتمع الإحصائي ككل.
2. أو يأخذ عينة من مجتمع الدراسة.
اختيار أحد الخيارين يكون حسب الهدف من الدراسة.
تعريف العينة.
هي أخذ جزء من المجتمع يمثل الكل، من أجل دراسته.
هي طريقة اختبار العينة تسمى بطريقة المعاينة وهذه الطريقة لا تكون عشوائية فالمعاينة هي علم وفن تساعد الباحث على وضع معلوماته بمستوى الدقة المطلوبة.
مميزات العينة.
- تختصر لنا الوقت أو توفر الوقت والتكاليف والجهد.
- يمكن الحصول على إجابات دقيقة وكاملة.
- إمكانية الاستبدال المفردات إذا امتنعت عن الإجابة، بنفس الطرق التي اخترنا بها العينة السابقة.
استنتاج.
يطلق على المجموعة التي بصدد دراستها بجمهور البحث وهذا المصطلح هو تعبير إحصائي وليس مرادف لكلمة الناس فقد يكون جمهور البحث مجموعة من الطلاب ... الخ.
أهمية العينة في العلوم الاجتماعية.
نظرا لصعوبة اختيار الباحث للحصر الشامل فهو يلجئ للعينة، فهي تعطي الدقة اللازمة والمصداقية المطلوبة أكثر من أسلوب الحصر الشامل.
أسلوب المعاينة.
تقدير حجم العينة: لا يوجد اتفاق علمي حول حجم العينة حيث توجد اتجاهين:
1. هذا الأسلوب يعطي تقديرات بـ 10% إلى 15% .
2. هذا الاتجاه يعتمد على نظرية الاحتمالات وهي تلزمنا بمعرفة كل معطيات مجتمع البحث.
سحب العينة من المجتمع الأصلي:
1. في حالة مجتمع صغير: في هذه الحالة فإن الإشكال يتمثل في مدى توافر عدد كافي للقيام بالبحث.
2. في حالة مجتمع كبير: في هذه الحالة لبد للباحث اختيار العينة وذلك بأحد الأسلوبين:
أ- الاختيار الغير عشوائي: حيث يتم اختيار العينة التي يرى الباحث أنها تمثل المجتمع بنسبة لصفة أو خاصية ما.
ب- الاختيار العشوائي: يوجد طريقتين للاختيار العشوائي:
a) طريقة القرعة.
b) طريقة الجداول العشوائية.
أنواع العينات:.
تنقسم العينات إلى نوعين احتمالية أو غير احتمالية:
العينات الاحتمالية:
1. العينات العشوائية البسيطة: يستخدم فيها جميع مفردات المجتمع الإحصائي متجانسة، ويكون الهدف من البحث هو تحديد خصائص المجتمع، وتعطى نفس الفرصة لجميع مفردات المجتمع للظهور.
2. العينة العشوائية المنتظمة: هي في الواقع عينة بسيطة ولكن تتطلب تنظيم المفردات أو ترتيبها وعند ذلك تنتفي العشوائية.
مثال: ليدنا مجتمع يتكون من 6000 مفردة والعينة المطلوبة 200 مفردة والخطوات وفق العينة العشوائية تكون كالتالي:
عدد مفردات المجتمع الأصلي
مقدار التمثيل = ــــــــــــــــ
عدد مفردات العينة
ومنه: مقدار التمثيل= 600/300=30.
لنفترض أننا قمنا باختيار الرقم 22 كرقم عشوائي ومنه نجد
22.52.82.112. إلى أن نصل إلى 5992.
كيفية إيجاد أي مفردة من مفردات العينة:
رقم المفردة بالعينة = الرقم العشوائي المختار + ترتيب المفردة -1 على مقدار التمثيل.
يمتاز هذا النوع من العينات بالسهولة والسرعة في التطبيق.
3. العينة العشوائية الطبقية: تستخدم في دراسة المجتمعات التي تتميز بتباين نوعيات مفردتها، وقبل الاختيار يتم تقسيم المجتمع إلى طبقات ولكل طبقة خصائص معينة، ويتم التعامل مع كل طبقة وكأنه مجتمع مستقل ثم نأخذ عينة عشوائية من الطبقة.
طريقة اختيار العينة الطبقية:
- يقسم المجتمع الأصلي إلى مجموعات متجانسة إلى طبقات.
- تحديد نسبة مفردات كل طبقة في المجتمع الإحصائي النسبة تأخذ كتالي:
حجم الطبقة
نسبة مفردات كل طبقة= ــــــــــــــــ
حجم المجتمع الأصلي
ومن أجل تحديد مفردات العينات المطلوبة من كل طبقة نستخدم ثلاث طرق:
أ- طريقة التوزيع المتساوي: حيث يوزع (حجم العينة الكلي) على مختلف الطبقات بالتساوي دون النظر إلى حجم الطبقات ويحسب وفق التالي:
الحجم الكلي للعينة
حجم كل عينة = ــــــــــــــــ
عدد الطبقات
ب- طريقة التوزيع المتناسب: حيث يوزع حجم العينة الكلي، بحيث يتناسب مع حجم العينة الذي يخصص لكل طبقة معينة، وتحسب وفق الصيغة التالية:
الحجم الكلي للعينة×حجم الطبقة
حجم العينة من طبقة معينة = ــــــــــــــــ
حجم المجتمع الأصلي